Skip to main content
Log in

Pattern of the Activity of (0.5–15)%CoO/CeO2 Catalysts in Carbon Monoxide Oxidation with Oxygen in Excess Hydrogen

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Samples of (0.5–15)%CoO/CeO2, Co3O4, and CeO2 have been studied in the oxidation of CO to CO2 in a CO+O2+H2 mixture in a range of 40–340°C. The highest activity in CO oxidation is exhibited by 10%CoO/CeO2 with a characteristic conversion of CO to CO2 of γ50 = 50% at Т50 140°С and γ 100% at Т = 180–220°С. The СО2 yield decreases at 220–240°C due to competition for oxygen in the CO and H2 oxidation reactions; at Т > 240°C, it decreases due to the consumption of CO in the methanation reaction. According to XRD and H2-TPR, cobalt oxide in the 10%CoO/CeO2 sample is present in two forms of a highly dispersed Co3O4 oxide (CoxOy clusters) interacting with the support and in the form of a Co3O4 phase. Carbon monoxide oxidation in a range of 60–180°C occurs on CoxOy clusters. Under these conditions, the activity of particles of the Co3O4 phase in pure oxide and the 10%CoO/CeO2 catalyst is lower than that of the clusters. The effect of the properties of adsorption complexes formed involving the oxygen contained in the clusters and in the gas phase on the temperature dependence of CO conversion has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Olah, G.A., Goeppert, A., and Surya Prokash, G.K., Beyond Oil and Gas. The Methanol Economy, New York: Wiley, 2009.

    Book  Google Scholar 

  2. Mishra, A. and Prasad, R., Bull. Chem. React. Eng. Catal., 2011, vol. 6, no. 1, p. 1.

    Article  CAS  Google Scholar 

  3. Royer, S. and Duprez, D., ChemCatChem, 2011, vol. 3, p. 24.

    Article  CAS  Google Scholar 

  4. Lu, J., Wang, J., Zou, Q., Zhao, Y., Fang, J., He, S., He, D., and Luo, Y., J. Alloys Compd., 2019, vol. 784, p. 1248.

    Article  CAS  Google Scholar 

  5. Kim, H.J., Lee, G., Jang, M.G., Noh, K.J., and Han, L.W., ChemCatChem, 2019, vol. 11, no. 9, p. 2288.

    Article  Google Scholar 

  6. Malwadkar, S., Bera, P., and Satyanarayana, C.V.V., J. Rare Earths, 2020, vol. 38, p. 941

    Article  CAS  Google Scholar 

  7. Jansson, J., J. Catal., 2000, vol. 194, p. 55.

    Article  CAS  Google Scholar 

  8. Jansson, J., Palmqvist, A.E.C., Fridell, E., Skoglundh, M., Osterlund, L., Thornahlend, P., and Langer, V., J. Catal., 2002, vol. 2011, p. 387.

    Article  Google Scholar 

  9. Feng, Y., Li, L., Niu, S., Qu, Y., Zhang, Q., Li, Y., Zhao, W., Li, H., and Shi, J., Appl. Catal., B, 2012, vols. 111–112, p. 461.

    Article  Google Scholar 

  10. Nyathi, T.M., Ficher, N., York, A.P.E., Morgan, D.G., Hutchings, G.J., Gibson, E.K., Wells, P.P., Catlow, C.R.A., and Caeys, M., ACS Catal., 2019, vol. 9, p. 7166.

    Article  CAS  Google Scholar 

  11. Yung, M.M., Holmgreen, E.M., and Ozkan, U.S., J. Catal., 2007, vol. 247, p. 356.

    Article  CAS  Google Scholar 

  12. Il’ichev, A.N., Bykhovskii, M.Ya., Shashkin, D.P., Fattakhova, Z.T., and Korchak, V.N., Kinet. Catal., 2021, vol. 62, no. 6, p. 787.

    Article  Google Scholar 

  13. Lu, J., Wang, J., Zou, Q., Zhou, Q., Fang, J., He, S., He, D., and Luo, Y., J. Alloys Compd., 2019, vol. 784, p. 1248.

    Article  CAS  Google Scholar 

  14. Ivanin, I.A., Krotova, I.N., Udalova, O.V., Zanaveskin, K.L., and Shilina, M.I., Kinet. Catal., 2021, vol. 62, no. 6, p. 798.

    Article  CAS  Google Scholar 

  15. Zhao, Z., Yung, M.M., and Ozkan, U.S., Catal. Commun., 2008, vol. 9, p. 1465.

    Article  CAS  Google Scholar 

  16. Kang, M., Song, M.M., and Lee, C.H., Appl. Catal., A, 2003, vol. 251, p. 143.

  17. Woods, M.P., Gawade, P., Tan, B., and Ozkan, U.S., Appl. Catal., B, 2010, vol. 97, p. 28.

    Article  CAS  Google Scholar 

  18. Il’ichev, A.N., Fattakhova, Z.T., Shashkin, D.P., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2016, vol. 57, no. 5, p. 686.

    Article  Google Scholar 

  19. Powder Diffraction File. Alphabetical Indexes. Inorganic Phases, JCPDS (International Center for Diffraction Data, Pennsylvania, 1992).

  20. Liotta, L.F., Carlo, G.D., Pantaleo, G., Venezia, A.M., and Deganelo, G., Appl. Catal., B, 2006, vol. 66, p. 217.

    Article  CAS  Google Scholar 

  21. Il’ichev, A.N., Bykhovsky, M.Ya., Fattakhova, Z.T., Shashkin, D.P., Fedorova, Yu.E., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2019, vol. 60, no. 5, p. 661.

    Article  Google Scholar 

  22. Arango-Diaz, A., Cecilia, J.A., Marrero-Jerez, J., Nunez, P., Jimenez-Jimenez, J., and Rodriguez-Castellon, E., Ceram. Int., 2016, vol. 42, p. 7462.

    Article  CAS  Google Scholar 

  23. Luo, J.-Y., Meng, M., Li, X., Li, X.-G., Zha, Y.-Q., Hu, T.-D., Xie, Y.-N., and Zhang, J., J. Catal., 2008, vol. 254, p. 310.

    Article  CAS  Google Scholar 

  24. Zhu, H., Razzaq, R., Jiang, L., and Li, C., Catal. Commun., 2012, vol. 23, p. 43.

    Article  CAS  Google Scholar 

  25. Firsova, A.A., Khomenko, T.I., Sil’chenkova, O.N., and Korchak, V.N., Kinet. Catal., 2010, vol. 51, no. 2, p. 299.

    Article  CAS  Google Scholar 

  26. Yu, K., Lou, L., Liu, S., and Zhou, W., Adv. Sci., 2020, vol. 7, p. 1.

    Google Scholar 

  27. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

Download references

Funding

This work was performed under a state task of the Federal Agency for Scientific Organizations of the Russian Federation (subject V.46.13, 0082-2014-0007, no. AAAA-A18-118020890105-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Il’ichev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: XRD, X-ray diffraction analysis; H2-TPR, temperature-programmed reduction with hydrogen; BET, Brunauer–Emmett–Teller method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.N., Bykhovsky, M.Y., Fattakhova, Z.T. et al. Pattern of the Activity of (0.5–15)%CoO/CeO2 Catalysts in Carbon Monoxide Oxidation with Oxygen in Excess Hydrogen. Kinet Catal 63, 505–514 (2022). https://doi.org/10.1134/S0023158422050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422050044

Keywords:

Navigation