Skip to main content
Log in

Role of Zeolites in Heat and Mass Transfer in Pelletized Multifunctional Cobalt-Based Fischer–Tropsch Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The role of a zeolite in the H-form in heat and mass transfer in pellets of a composite Co catalyst for Fischer–Tropsch synthesis (FTS) has been studied. It has been shown that the introduction of a heat-conducting additive—metallic aluminum—into the catalyst composition leads to an increase in the thermal stability of the pellets; however, it does not provide high productivity. The introduction of a zeolite into the catalyst contributes to the intensification of mass transfer owing to a decrease in the density and average boiling point of the resulting liquid hydrocarbons. In this case, heat transfer is further improved due to heat removal owing to the heat capacity of the removed products. According to the studies on the conversion of liquid hydrocarbons under FTS conditions, a mechanism of the simultaneous occurrence of these processes in the presence of a cobalt–zeolite catalyst has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sineva, L.V. and Mordkovich, V.Z., Nauchnyi Zhurn. Rossiiskogo Gazovogo Obshchestva, 2019, vol. 20, no. 1, p. 42.

    Google Scholar 

  2. Greener Fischer–Tropsch Processes, Maitlis, P.M. and Klerk, A., Eds., Weinheim: Wiley, 2013, p. 372.

    Google Scholar 

  3. Sousa-Aguiar, E.F., Noronha, F.B., and Faro, A., Jr., Catal. Sci. Technol., 2011, vol. 1, p. 698.

    Article  Google Scholar 

  4. Brosius, R., Kooyman, P.J., and Fletcher, J.C.Q., Nanotechnology in Catalysis, Sels, B. and Van de Voorde, M., Eds., Weinheim: Wiley, 2017, p. 449.

  5. Fratalocchi, L., Visconti, C.G., Groppi, G., Lietti, L., and Tronconi, E., Chem. Eng. J., 2018, vol. 349, p. 829.

    Article  CAS  Google Scholar 

  6. Yakovenko, R.E., Narochnyi, G.B., Savost’yanov, A.P., and Kirsanov, V.A., Khimicheskoe i Neftegazovoe Mashinostroenie, 2015, no. 3, p. 11.

  7. Soromotin, V.N., Yakovenko, R.E., Medvedev, A.V., and Mitchenko, S.A., Kinet. Catal., 2021, vol. 62, no. 6, p. 845.

    Article  CAS  Google Scholar 

  8. Khasin, A.A., Gazokhimiya, 2008, no. 2, p. 28.

  9. Punt, A., Proc. 10th Natural Gas Conversion Symposium (NGCS 10), March 2–7, 2013. Doha, 2013.

  10. Merino, D., Sanz, O., and Montes, M., Chem. Eng. J., 2017, vol. 327, p. 1033.

    Article  CAS  Google Scholar 

  11. Merino, D., Sanz, O., and Montes, M., Fuel, 2017, vol. 210, p. 49.

    Article  CAS  Google Scholar 

  12. Kim, J., Nese, V., Joos, J., Jeske, K., Duyckaerts, N., Pfänder, N., and Prieto, G., J. Mater. Chem. A, 2018, vol. 6, no. 44, p. 21978.

    Article  CAS  Google Scholar 

  13. Asalieva, E., Sineva, L., Sinichkina, S., Solomonik, I., Gryaznov, K., Pushina, E., Kulchakovskaya, E., Kulnitskiy, B., Ovsyannikov, D., and Mordkovich, V., Appl. Catal., A, 2020, vol. 601, p. 117639.

  14. Kim, J., Nese, V., Joos, J., Jeske, K., Duyckaerts, N., Pfanderc, N., and Prieto, G., J. Mater. Chem. A, 2018, vol. 6, no. 44, p. 21978.

    Article  CAS  Google Scholar 

  15. Wang, D., Wang, Z., Li, G., Li, X., and Hou, B., Ind. Eng. Chem. Res., 2018, vol. 57, no. 38, p. 12756.

    Article  CAS  Google Scholar 

  16. Asalieva, E., Gryaznov, K., Kulchakovskaya, E., Ermolaev, I., Sineva, L., and Mordkovich, V., Appl. Catal., A, 2015, vol. 505, p. 260.

  17. Sineva, L.V., Asalieva, E.Yu., and Mordkovich, V.Z., Russ. Chem. Rev., 2015, vol. 84, p. 1176.

    Article  CAS  Google Scholar 

  18. Yakovenko, R.E., Zubkov, I.N., Savost’yanov, A.P., Soromotin, V.N., Krasnyakova, T.V., Papeta, O.P., and Mitchenko, S.A., Kinet. Catal., 2021, vol. 62, no. 1, p. 172.

    Article  CAS  Google Scholar 

  19. Kibby, C., Jothimurugesan, K., Das, T., Lacheen, H.S., Rea, T., and Saxton, R.J., Catal. Today, 2013, vol. 215, p. 131.

    Article  CAS  Google Scholar 

  20. Wang, H., Pei, Y., Qiao, M., and Zong, B., Design of Bifunctional Solid Catalysts for Conversion of Biomass-Derived Syngas into Biofuels, in Production of Biofuels and Chemicals with Bifunctional Catalysts, Fang, Z., Smith, R., Jr., and Li, H., Eds., Springer: Singapore, 2017, vol. 8, p. 137.

    Google Scholar 

  21. Sartipi, S., Makkee, M., Kapteijn, F., and Gascon, J., Catal. Sci. Technol, 2014, vol. 4, no. 4, p. 893.

    Article  CAS  Google Scholar 

  22. Murzin, D.Yu., Kinet. Catal., 2020, vol. 61, no. 1, p. 80.

    Article  CAS  Google Scholar 

  23. Zhu, C. and Bollas, G.M., Appl. Catal., B, 2018, vol. 235, p. 92.

    Article  Google Scholar 

  24. Sun, B., Qiao, M., Fan, K., Ulrich, J., and Tao, F., ChemCatChem, 2011, vol. 3, p. 542.

    Article  CAS  Google Scholar 

  25. Brosius, R. and Fletcher, J.C.Q., J. Catal. 2014, vol. 317, p. 318.

    Article  CAS  Google Scholar 

  26. Li, W., He, Y., Li, H., Shen, D., Xing, C., and Yang, R., Catal. Commun., 2017, vol. 98, p. 98.

    Article  CAS  Google Scholar 

  27. Kang, S., Ryu, J., Kim, J., Kim, H., Lee, C., Lee, Y., and Jun, K., Mod. Res. Catal., 2014, vol. 3, p. 99.

    Article  Google Scholar 

  28. Subramanian, V., Zholobenko, V.L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., Paul, S., Ordomsky, V.V., and Khodakov, A.Y., ChemCatChem, 2015, vol. 8, no. 2, p. 380.

    Article  Google Scholar 

  29. Xing, C., Yang, G., Yang, M.W.R., Yang, R., Tan, L., Zhu, P., Wei, Q., Li, J., Mao, J., Yoneyama, Y., and Tsubaki, N., Fuel, 2015, vol. 148, p. 48.

    Article  CAS  Google Scholar 

  30. Yakovenko, R.E., Bakun, V.G., Zubkov, I.N., Narochnyi, G.B., Papeta, O.P., and Savost’yanov, A.P., Katal. Prom-sti., 2020, vol. 20, no. 4, p. 275.

    CAS  Google Scholar 

  31. GOST R (State Standard) 57943-2017 (ISO 22007-4:2008).

  32. Jentoft, F.C. and Gates, B.C., Top. Catal., 1997, vol. 4, p. 1.

    Article  CAS  Google Scholar 

  33. Anderson, B.G., Schumacher, R.R., van Duren, R., Singh, A.P., and van Santen, R.A., J. Mol. Catal. A: Chem., 2002, vol. 181, p. 291.

    Article  CAS  Google Scholar 

  34. Sineva, L.V., Gorokhova, E.O., Pushina, E.A., Kulchakovskaya, E.V., and Mordkovich, V.Z., Mendeleev Commun., 2020, vol. 30, p. 362.

    Article  CAS  Google Scholar 

  35. Sineva, L.V., Gorokhova, E.O., Gryaznov, K.O., Ermolaev, I.S., and Mordkovich, V.Z., Catal. Today, 2021, vol. 378, p. 140.

    Article  CAS  Google Scholar 

  36. Lapidus, A.L., Solid Fuel Chem., 2013, no. 6, p. 88.

  37. Egiebor, N.O. and Cooper, W.C., Appl. Catal., 1985, vol. 17, p. 47.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Center for collective use of scientific equipment “Studies of Nanostructured, Carbon, and Superhard Materials” of Technological Institute for Superhard and Novel Carbon Materials. The authors thank I.G. Solomonik (Technological Institute for Superhard and Novel Carbon Materials) for conducting studies by temperature-programmed desorption of ammonia.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state task to Technological Institute for Superhard and Novel Carbon Materials and OOO INFRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Sineva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

ADDITIONAL INFORMATION

The paper is based on the Proceedings of IV Russian Congress on Catalysis “Roskataliz” (September 20–25, 2021, Kazan, Russia).

Abbreviations and notation: FTS, Fischer–Tropsch synthesis; MWD, molecular weight distribution; LHM, liquid hydrocarbon mixture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sineva, L.V., Nalivaiko, E.O., Gryaznov, K.O. et al. Role of Zeolites in Heat and Mass Transfer in Pelletized Multifunctional Cobalt-Based Fischer–Tropsch Catalysts. Kinet Catal 63, 321–329 (2022). https://doi.org/10.1134/S0023158422030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422030089

Keywords:

Navigation