Skip to main content
Log in

Aggregation Behavior and Catalytic Action of Carbamate-Bearing Surfactants in Aqueous Solutions

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The aggregation behavior of new cationic hexadecyl surfactants with one or two alkylcarbamate fragments in the head group in water was studied using conductometry, spectrophotometry, fluorescence spectroscopy, and dynamic light scattering, and their catalytic action in hydrolytic processes was examined. Kinetic parameters of the alkaline hydrolysis of carboxylic acid esters (p-nitrophenyl acetate and p-nitrophenyl caprinate) were obtained upon the variation of the structures of surfactant head groups and the pH of solution. It was shown that the catalytic effect of micelle-forming surfactants with a single carbamate fragment is higher than that of the corresponding dicarbamate compounds, and it decreases with the alkyl chain length of substituents in head groups. It was found that carbamate surfactants capable of vesicle formation accelerate the hydrolysis of the test esters to a greater extent than their analogs forming micelles: the observed acceleration of the process can exceed two orders of magnitude in the case of a compound with the decyl substituent in a carbamate fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sanders, L., Cationic Surfactants: Properties, Uses and Toxicity, New York: Nova Science, 2016.

    Google Scholar 

  2. Devínsky, F., Pisárčik, M., snd Lukáč, M., Cationic Amphiphiles: Self-Assembling Systems for Biomedicine and Biopharmacy, New York: Nova Science, 2017.

  3. Sar, P., Ghosh, A., Scarso, A., and Saha, B., Res. Chem. Intermed., 2019, vol. 45, p. 6021. https://doi.org/10.1007/s11164-019-04017-6

    Article  CAS  Google Scholar 

  4. Morsy, S.M.I., Int. J. Curr. Microbiol. Appl. Sci., 2014, vol. 3, issue 5, p. 237.

    Google Scholar 

  5. Zhu, Y., Free, M.L., Woollam, R., and Durnie, W., Prog. Mater. Sci., 2017, vol. 90, p. 159. https://doi.org/10.1016/j.pmatsci.2017.07.006

    Article  CAS  Google Scholar 

  6. Zakharova, L.Ya., Mirgorodskaya, A.B., Zhiltsova, E.P., Kudryavtseva, L.A., and Konovalov, A.I., Molecular Encapsulation: Organic Reactions in Constrained Systems, Brinker, U.H. and Mieusset, J.-L., Eds., Chichester: Wiley, 2010, p. 397.

  7. Rangel-Yagui, C.O., Pessoa, A., Jr., and Tavares, L.C., J. Pharm. Pharm. Sci., 2005, vol. 8, p. 147.

    CAS  PubMed  Google Scholar 

  8. Banerjee, M., Panjikar, P.C., Bhutia, Z.T., Bhosle, A.A., and Chatterjee, A., Tetrahedron, 2021, vol. 88, p. 132142. https://doi.org/10.1016/j.tet.2021.132142

    Article  CAS  Google Scholar 

  9. Aboudiab, B., Tehrani-Bagha, A.R., and Patra, D., Colloids Surf. A, 2020, vol. 592, p. 124602.

    Article  CAS  Google Scholar 

  10. Lorenzetto, A.T., Berton, G., Fabris, F., and Scarso, A., Catal. Sci. Technol., 2020, vol. 10, p. 4492. https://doi.org/10.1039/D0CY01062F

    Article  CAS  Google Scholar 

  11. Shen, T., Zhou, Sh., Ruan, J., Chen, X., Liu, X., Ge, X., and Qian, Ch., Adv. Colloid Interface Sci., 2021, vol. 287, p. 102299. https://doi.org/10.1016/j.cis.2020.102299

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, F., Zehner, B., Korth, W., Jess, A., and Cokoja, M., Catal. Sci. Technol., 2020, vol. 10, p. 4448. https://doi.org/10.1039/D0CY00673D

    Article  CAS  Google Scholar 

  13. Buurma, N.J., Curr. Opin. Colloid Interface Sci., 2017, vol. 32, p. 69. https://doi.org/10.1016/j.cocis.2017.10.005

    Article  CAS  Google Scholar 

  14. Bélières, M., Chouini-Lalanne, N., and Déjugnat, C., RSC Adv., 2015, vol. 5, p. 35830. https://doi.org/10.1039/C5RA02853A

  15. Al-Shamary, M.N., Al-Lohedan, H.A., Rafiquee, M.Z.A., El-Ablack, F., and Issa, Z.A., J. Saudi Chem. Soc., 2017, vol. 21, p. 193. https://doi.org/10.1016/j.jscs.2014.01.002

    Article  CAS  Google Scholar 

  16. Mirgorodskaya, A.B., Valeeva, F.G., Kushnazarova, R.A. Lukashenko, S.S.,and Zakharova, L.Y., Kinet. Catal., 2021, vol. 62, p. 82. https://doi.org/10.1134/S0023158420060099

    Article  CAS  Google Scholar 

  17. Muff, J., MacKinnon, L., Durant, N.D., Bennedsen, L.F., Rügge, K., Bondgaard, M., and Pennell, K.D., Environ. Sci. Pollut. Res., 2020, vol. 27, p. 3428. https://doi.org/10.1007/s11356-019-07152-0

    Article  CAS  Google Scholar 

  18. Zhil’tsova, E.P., Ibatullina, M.R., Lukashenko, S.S., Kadirov, M.K., and Zakharova, L.Y., Kinet. Catal., 2020, vol. 61, p. 269. https://doi.org/10.1134/S0023158420010140

    Article  Google Scholar 

  19. Mirgorodskaya, A.B., Kushnazarova, R.A., Lukashenko, S.S., Voloshina, A.D., Lenina, O.A, Zakharova, L.Ya., and Sinyashin, O.G., J. Mol. Liq., 2018, vol. 269, p. 203. https://doi.org/10.1016/j.molliq.2018.08.007

    Article  CAS  Google Scholar 

  20. Mirgorodskaya, A.B., Kushnazarova, R.A., Lukashenko, S.S., and Zakharova, L.Ya., J. Mol. Liq., 2019, vol. 292, p. 111407. https://doi.org/10.1016/j.molliq.2019.111407

    Article  CAS  Google Scholar 

  21. Kushnazarova, R.A., Mirgorodskaya, A.B., Lukashenko, S.S., Voloshina, A.D., Sapunova, A.S., Nizameev, I.R., Kadirov, M.K., and Zakharova, L.Ya., J. Mol. Liq., 2020, vol. 318, p. 113894. https://doi.org/10.1016/j.molliq.2020.113894

    Article  CAS  Google Scholar 

  22. Kushnazarova, R.A., Mirgorodskaya, A.B., and Zakharova, L.Y., Russ. Chem. Bull., 2021, vol. 70, p. 585. https://doi.org/10.1007/s11172-021-3129-z

    Article  CAS  Google Scholar 

  23. Mchedlov-Petrossyan, N.O., Pure Appl. Chem., 2008, vol. 80, p. 1459.

    Article  CAS  Google Scholar 

  24. Bertrand, A., Lortie, F., and Bernard, J., Macromol. Rapid Commun., 2012, vol. 33, p. 2062.

    Article  CAS  Google Scholar 

  25. Piñeiro, L., Novo, M., and Al-Soufi, W., Adv. Colloid Interface Sci., 2015, vol. 215, p. 1.

    Article  Google Scholar 

  26. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer, 2006.

    Book  Google Scholar 

  27. Menger, F.M. and Portnoy, C.T., J. Am. Chem. Soc., 1968, vol. 90, p. 1875.

    Article  CAS  Google Scholar 

  28. Berezin, I.V., Martinek, K., and Yatsimirskii, A.K., Usp. Khim., 1973, vol. 42, no. 10, p. 1729.

    CAS  Google Scholar 

  29. Kushnazarova, R.A., Mirgorodskaya, A.B., Kuznetsov, D.M., Tyryshkina, A.A., Voloshina, A.D., Gumerova, S.K., Lenina, O.A., Nikitin, E.N., and Zakharova, L.Ya., J. Mol. Liq., 2021, vol. 336, p. 116318. https://doi.org/10.1016/j.molliq.2021.116318

    Article  CAS  Google Scholar 

  30. Mishra, S., Pang, Sh., Zhang, W., Lin, Z., Bhatt, P., and Chen, Sh., Chemosphere, 2021, vol. 279, p. 130500. https://doi.org/10.1016/j.chemosphere.2021.130500

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-73-30012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Mirgorodskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: DABCO, diazobicyclooctane; CAC, critical aggregation concentration; CMC, critical micelle concentration; CTAB, cetyltrimethylammonium bromide; PNPA, p-nitrophenyl acetate; and PNPC, p-nitrophenyl caprinate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirgorodskaya, A.B., Kushnazarova, R.A., Kuznetsov, D.M. et al. Aggregation Behavior and Catalytic Action of Carbamate-Bearing Surfactants in Aqueous Solutions. Kinet Catal 63, 261–269 (2022). https://doi.org/10.1134/S0023158422030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422030065

Keywords:

Navigation