Skip to main content
Log in

Synthesis of Fe Catalysts Doped in SBA-15 by EISA Method: Characterization and Catalytic Studies in 2-Propanol Decomposition

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A series of Fe catalysts doped in SBA-15 was synthesized in one step by the EISA method at room temperature and without inorganic acids. Every catalyst was characterized by XRD, N2 adsorption, SEM–EDS, FTIR and UV–Vis Diffuse Reflectance, and their catalytic activity was evaluated by performing a 2-propanol decomposition reaction. The ordered mesoporous structure was confirmed for SBA-15 silica by XRD and N2 adsorption studies. Even though the pore order was reduced through the incorporation of Fe into the silica framework, the mesostructured characteristics were maintained. In addition, the morphology of these catalysts prepared by this method was revealed, and the amount of Fe added to the catalysts was maintained at the end of the synthesis with only small losses. Isolated Fe3+ species in a tetrahedral location were identified by UV–Vis DR into the framework and extra-framework, respectively. This Fe3+ species generated strong acidic sites, whose acidity increased due to the addition of Fe, producing a high conversion and selectivity of propene greater than 99% for all the catalysts. The relation between the amount of Fe, the coordination of Fe species, the creation of acidic sites in the catalysts, and their effect on 2-propanol decomposition was analyzed based on the information obtained in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., J. Am. Chem. Soc., 1988, vol. 120, no. 24, p. 6024.

    Article  Google Scholar 

  2. Wu, H., Xiao, Y., Guo, Y., Miao, S., Chen, Q., and Chen, Z., Microporous Mesoporous Mater., 2020, vol. 292, art. ID 109754.

    Article  CAS  Google Scholar 

  3. Zeidan, R.K., Hwang, S.J., and Davis, M.E., Angew. Chem., Ger. Ed., 2006, vol. 118, no. 38, p. 6480.

    Google Scholar 

  4. Zhao, Y., Wang, W., Jing, X., Gong, X., Wen, H., and Deng, Y., J. Anal. Appl. Pyrol., 2020, vol. 146, art. ID 104755.

  5. Wang, Y., Yang, W., Yang, L., Wang, X., and Zhang, Q., Catal. Today, 2006, vol. 117, nos. 1–3, p. 156.

    Article  CAS  Google Scholar 

  6. Brinker, C.J., Lu, Y., Sellinger, A., and Fan, H., Adv. Mater., 1999, vol. 11, no. 7, p. 579.

    Article  CAS  Google Scholar 

  7. Grosso, D., Cagnol, F., Soler-Illia, G.D.A., Crepaldi, E.L., Amenitsch, H., Brunet-Bruneau, A., and Sanchez, C., Adv. Funct. Mater., 2004, vol. 14, no. 4, p. 309.

    Article  CAS  Google Scholar 

  8. Wang, J. and Liu, Q., Solid State Commun., 2008, vol. 148, nos. 11–12, p. 529.

    Article  CAS  Google Scholar 

  9. Xu, L., Song, H., and Chou, L., Int. J. Hydrogen Energy, 2012, vol. 37, no. 23, p. 18001.

    Article  CAS  Google Scholar 

  10. Miao, Z., Zhao, H., Yang, J., Zhao, J., Song, H., and Chou, L., New J. Chem., 2015, vol. 39, no. 2, p. 1322.

    Article  CAS  Google Scholar 

  11. Yan, X.M., Lei, J.H., Liu, D., Wu, Y.C., and Liu, W., Mater. Res. Bull., 2007, vol. 42, no. 11, p. 1905.

    Article  CAS  Google Scholar 

  12. Soler-Illia, G.D.A., Louis, A., and Sanchez, C., Chem. Mater., 2002, vol. 14, no. 2, p. 750.

    Article  Google Scholar 

  13. Wang, J., Liu, Q., and Liu, Q., Microporous Mesoporous Mater., 2007, vol. 102, no. 1–3, p. 51.

    Article  CAS  Google Scholar 

  14. Zhang, H., Tang, C., Lv, Y., Sun, C., Gao, F., Dong, L., and Chen, Y., J. Colloid Interface Sci., 2012, vol. 380, no. 1, p. 16.

    Article  CAS  Google Scholar 

  15. Zhang, T.M., Li, D.Y., and Liu, W., Mater. Sci. Forum, 2017, vol. 898, p. 1916.

    Article  Google Scholar 

  16. Blanco-Bonilla, F., Lopez-Pedrajas, S., Luna, D., Marinas, J.M., and Bautista, F.M., J. Mol. Catal. A: Chem., 2016, vol. 416, p. 105.

    Article  CAS  Google Scholar 

  17. Armenta, M.A., Valdez, R., Silva-Rodrigo, R., and Olivas, A., Fuel, 2019, vol. 236, p. 934.

    Article  CAS  Google Scholar 

  18. Morales-Anzures, F., Salinas-Hernández, P., Ornelas-Gutiérrez, C., Tzompantzi-Morales, F.J., and Pérez-Hernández, R., Catal. Today, 2020, vol. 349, p. 228.

    Article  CAS  Google Scholar 

  19. Korica, N., Mendes, P.S., De Clercq, J., and Thybaut, J.W., Ind. Eng. Chem. Res., 2021, vol. 60, no. 34, p. 12505.

    Article  CAS  Google Scholar 

  20. De Waele, J., Galvita, V.V., Poelman, H., Gabrovska, M., Nikolova, D., Damyanova, S., and Thybaut, J.W., Appl. Catal., A, 2020, vol. 591, p. 117401.

  21. Dietz, W.A., J. Chromatogr. Sci., 1967, vol. 5, no. 2, p. 68.

    Article  CAS  Google Scholar 

  22. Cheng, M., Zhao, H., Yang, J., Zhao, J., Yan, L., Song, H., and Chou, L., Microporous Mesoporous Mater., 2018, vol. 266, p. 117.

    Article  CAS  Google Scholar 

  23. Yu, S.C., Lee, J.S., Tung, S.F., and Lan, C.L., J. Geol. Soc. China, 1999, vol. 42, p. 349.

    CAS  Google Scholar 

  24. Cornu, C., Bonardet, J.L., Casale, S., Davidson, A., Abramson, S., André, G., and Koprivanac, N., J. Phys. Chem., C, 2012, vol. 116, no. 5, p. 3437.

    Article  CAS  Google Scholar 

  25. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, p. 1051.

    Article  CAS  Google Scholar 

  26. Charan, P.H.K. and Rao, G.R., J. Chem. Sci., 2015, vol. 127, no. 5, p. 909.

    Article  CAS  Google Scholar 

  27. Sánchez-Cruz, M., Hernández-Huesca, R., Pérez-Cruz, M.A., and Silva-González, N.R., Adv. Mater., 2020, vol. 9, no. 3, p. 42.

    Article  Google Scholar 

  28. Li, Y., Feng, Z., Lian, Y., Sun, K., Zhang, L., Jia, G., and Li, C., Microporous Mesoporous Mater., 2005, vol. 84, nos. 1–3, p. 41.

    Article  CAS  Google Scholar 

  29. Tomer, V.K., Devi, S., Malik, R., Nehra, S.P., and Duhan, S., Microporous Mesoporous Mater., 2016, vol. 219, p. 240.

    Article  CAS  Google Scholar 

  30. Luan, Z. and Fournier, J.A., Microporous Mesoporous Mater., 2005, vol. 79, nos. 1–3, p. 235.

    Article  CAS  Google Scholar 

  31. Anunziata, O.A., Beltramone, A.R., Martínez, M.L., and Belon, L.L., J. Colloid Interface Sci., 2007, vol. 315, no. 1, p. 184.

    Article  CAS  Google Scholar 

  32. Li, Y.S., Church, J.S., and Woodhead, A.L., J. Magn. Magn. Mater., 2012, vol. 324, no. 8, p. 1543.

    Article  CAS  Google Scholar 

  33. Li, Y., Feng, Z., Xin, H., Fan, F., Zhang, J., Magusin, P.C., and Li, C., J. Phys. Chem., B, 2006, vol. 110, no. 51, p. 26114.

    Article  CAS  Google Scholar 

  34. Liu, B. and Wang, D., Kinet. Catal., 2018, vol. 59, no. 4, p. 393.

    Article  CAS  Google Scholar 

  35. Zhu, L., Qu, H., Zhang, L., and Zhou, Q., Catal. Commun., 2016, vol. 73, p. 118.

    Article  CAS  Google Scholar 

  36. Wang, J.A., Bokhimi, X., Novaro, O., Lopez, T., Tzompantzi, F., Gomez, R., and Lopez-Salinas, E., J. Mol. Catal. A: Chem., 1999, vol. 137, nos. 1–3, p. 239.

    Article  CAS  Google Scholar 

  37. Turek, W. and Krowiak, A., Appl. Catal., A, 2012, vol. 417, p. 102.

  38. El-Sharkawy, E.A., Al-Shihry, S.S., and Youssef, A.M., Mater. Lett., 2007, vol. 61, nos. 14–15, p. 2947.

    Article  CAS  Google Scholar 

  39. Foo, G.S., Polo-Garzon, F., Fung, V., Jiang, D.E., Overbury, S.H., and Wu, Z., ACS Catal., 2017, vol. 7, no. 7, p. 4423.

    Article  CAS  Google Scholar 

  40. Zurnachyan, A.R., Manukyan, K.V., Kharatyan, S.L., Matyshak, V.A., and Mnatsakanyan, R.A., Kinet. Catal., 2011, vol. 52, no. 6, p. 851.

    Article  CAS  Google Scholar 

Download references

Funding

The authors of this work wish to thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for the doctoral scholarship and Vicerretoría de Investigación y Estudios de Posgrado at the Benemérita Universidad Autónoma de Puebla (VIEP-BUAP) for the financial support (no. 0024) of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pérez Cruz.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: EISA, evaporation-induced self-assembly; XRD, X-ray diffraction; SEM–EDS, scanning electron microscopy–energy-dispersive spectroscopy; FTIR, Fourier-transformed infrared spectroscopy; TEOS, tetraethyl orthosilicate; SAXS, small-angle X-ray powder diffraction; WAXS, wide-angle X-ray powder diffraction; AAS, atomic absorption spectroscopy; SBET, specific surface area; BET, Brunauer–Emmett–Teller method; Dp, diameter pore; Vp, total volume pore; BJH, Barrett–Joyner–Halenda method; LEI, lower secondary electron; TPD-NH3, temperature-programmed desorption analysis of ammonia; RF, response factor; CA, corrected areas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar García, E., Cruz, M.S., Madeira, H.Y. et al. Synthesis of Fe Catalysts Doped in SBA-15 by EISA Method: Characterization and Catalytic Studies in 2-Propanol Decomposition. Kinet Catal 62 (Suppl 1), S38–S47 (2021). https://doi.org/10.1134/S0023158421080036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421080036

Keywords:

Navigation