Skip to main content
Log in

Pt/Ce0.75Zr0.25O2 – x Catalysts for Water Gas Shift Reaction: Morphology and Catalytic Properties

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Highly dispersed 1.9 wt % Pt/Ce0.75Zr0.25O2 – x and 5 wt % Pt/Ce0.75Zr0.25O2 – x catalysts with an average particle size of 0.9 nm were prepared by sorption-hydrolytic precipitation. It was shown that the catalysts are active in the water gas shift reaction in a mixture simulating synthesis gas produced by steam reforming of natural gas. At an initial CO concentration of 10 vol % and a flow rate of 30000 ncm3 \({\text{g}}_{{{\text{cat}}}}^{{ - 1}}\) h–1, outlet CO and CH4 concentrations reach 2.5 and 0.01 vol %, respectively, over 1.9 wt % Pt/Ce0.75Zr0.25O2 – x at 325°C and 1.5 and 0.075 vol %, respectively, over 5 wt % Pt/Ce0.75Zr0.25O2 – x at 300°С. The observed reaction orders for CO and H2O over 5 wt % Pt/Ce0.75Zr0.25O2 – x were found to be close to zero, and the apparent activation energy for both catalysts was 86 kJ/mol. Transmission electron microscopy of the catalysts showed that the narrow size distribution and high dispersion of the supported particles are retained during the reaction. However, some coarsening of Pt particles occurs, the average size increases to 1.4 and 1.6 nm for 1.9 wt % Pt/Ce0.75Zr0.25O2 – x and 5 wt % Pt/Ce0.75Zr0.25O2 – x, respectively. For the catalysts after the reaction, the metallic Pt surface area values, measured by CO chemisorption and transmission electron microscopy, differ significantly. Most likely, it is caused by the presence of some of the surface Pt atoms in the oxidized state. It was shown that the temperature dependences of the turnover frequency in the water gas shift reaction per the length unit of the metal-support interface, coincide for catalysts 1.9 wt % Pt/Ce0.75Zr0.25O2 – x and 5 wt % Pt/Ce0.75Zr0.25O2 – x. Based on this, an assumption was made about the leading role of the Pt–Ce0.75Zr0.25O2 – x boundary in the catalysis of the water gas shift reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sharaf, O.Z. and Orhan, M.F., Renewable Sustainable Energy Rev., 2014, vol. 32, p. 810.

    Article  CAS  Google Scholar 

  2. Park, E.D., Lee, D., and Lee, H.C., Catal. Today, 2009, vol. 139, no. 4, p. 280.

    Article  CAS  Google Scholar 

  3. Kerzhentsev, M.A., Matus, E.V., Rundau, I.A., Kuznetsov, V.V., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., and Ismagilov, Z.R. Kinet. Catal., 2017, vol. 58, no. 5, p. 601.

    Article  CAS  Google Scholar 

  4. Choudhary, T.V. and Goodman, D.W., Catal. Today, 2002, vol. 77, nos. 1–2, p. 65.

    Article  CAS  Google Scholar 

  5. Baronskaya, N.A., Minyukova, T.P., Khassin, A.A., Yurieva, T.M., and Parmon, V.N., Russ. Chem. Rev., 2010, vol. 79, no. 11, p. 1027.

    Article  CAS  Google Scholar 

  6. Potemkin, D.I., Konishcheva, M.V., Zadesenets, A.V., Snytnikov, P.V., Filatov, E.Yu., Korenev, S.V., and Sobyanin, V.A., Kinet. Catal., 2018, vol. 59, no. 4, p. 514.

    Article  CAS  Google Scholar 

  7. Il’ichev, A.N., Bykhovsky, M.Ya., Fattakhova, Z.T., Shashkin, D.P., Fedorova, Yu.E., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2019, vol. 60, no. 5, p. 661.

    Article  Google Scholar 

  8. Takenaka, S., Shimizu, T., and Otsuka, K., Int. J. Hydrogen Energy, 2004, vol. 29, no. 10, p. 1065.

    Article  CAS  Google Scholar 

  9. Palma, V., Ruocco, C., Cortese, M., Renda, S., Meloni, E., Festa, G., and Martino, M., Metals, 2020, vol. 10, no. 7, p. 1.

    Article  Google Scholar 

  10. Voitic, G., Pichler, B., Basile, A., Iulianelli, A., Malli, K., Bock, S., and Hacker, V., Fuel Cells and Hydrogen: From Fundamentals to Applied Research, Amsterdam: Elsevier, 2018, p. 215.

    Google Scholar 

  11. Ivanova, S., Laguna, O.H., Centeno, M.Á., Eleta, A., Montes, M., and Odriozola, J.A., Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Amsterdam: Elsevier, 2013, Ch. 10, p. 225.

    Google Scholar 

  12. Chen, W.H. and Chen, C.Y., Appl. Energy, 2020, vol. 258, p. 114078.

    Article  CAS  Google Scholar 

  13. Li, Y., Kottwitz, M., Vincent, J.L., Enright, M.J., Liu, Z., Zhang, L., Huang, J., Senanayake, S.D., Yang, W.C.D., Crozier, P.A., Nuzzo, R.G., and Frenkel, A.I., Nat. Commun., 2021, vol. 12, no. 1, p. 1.

    Article  Google Scholar 

  14. Efstathioum, A.M., Catalysis, Cambridge: The Royal Society of Chemistry, 2016, vol. 28, Ch. 7, p. 175.

    Google Scholar 

  15. Shekhar, M., Wang, J., Lee, W.-S., Damion Williams, W., Min Kim, S., Stach, A.E., Miller, T.J., Nicholas Delgass, W., and Ribeiro, H.F., J. Am. Chem. Soc., 2012, vol. 134, no. 10, p. 4700.

    Article  CAS  Google Scholar 

  16. Chen, Y., Lin, J., Li, L., Qiao, B., Liu, J., Su, Y., and Wang, X., ACS Catal., 2018, vol. 8, no. 2, p. 859.

    Article  CAS  Google Scholar 

  17. Simonov, P.A., Shoinkhorova, T.B., Snytnikov, P.V., Potemkin, D.I., and Belyaev, V.D., RF Patent No. 2653360 (2017).

  18. Shoynkhorova, T.B., Simonov, P.A., Potemkin, D.I., Snytnikov, P.V., Belyaev, V.D., Ishchenko, A.V., Svintsitskiy, D.A., and Sobyanin, V.A., Appl. Catal., B, 2018, vol. 237, p. 237.

    Article  CAS  Google Scholar 

  19. Bergeret, G. and Gallezot, P., Handbook of Heterogeneous Catalysis, New York: Wiley, 2008, p. 738.

    Google Scholar 

  20. Pastor-Pérez, L., Ramos-Fernández, E.V., and Sepúlveda-Escribano, A., Int. J. Hydrogen Energy, 2019, vol. 44, no. 39, p. 21837.

    Article  Google Scholar 

  21. Gonzalez Castaño, M., Reina, T.R., Ivanova, S., Centeno, M.A., and Odriozola, J.A., J. Catal., 2014, vol. 314, p. 1.

    Article  Google Scholar 

  22. Reddy, G.K. and Smirniotis, P.G., Water Gas Shift Reaction, Amsterdam: Elsevier, 2015, p. 225.

    Google Scholar 

  23. Boronin, A.I., Slavinskaya, E.M., Figueroba, A., Stadnichenko, A.I., Kardash, T.Y., Stonkus, O.A., Fedorova, E.A., Muravev, V.V., Svetlichnyi, V.A., Bruix, A., and Neyman, K.M., Appl. Catal., B, 2021, vol. 286, p. 119931.

    Article  CAS  Google Scholar 

  24. Kalamaras, C.M., Gonzalez, I.D., Navarro, R.M., Fierro, J.L.G., and Efstathiou, A.M., J. Phys. Chem. C, 2011, vol. 115, no. 23, p. 11595.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The TEM studies were carried out using facilities of the shared research center “National center of investigation of catalysts” at Boreskov Institute of Catalysis.

Funding

The work was supported by the Russian Science Foundation under the project no. 21-73-20075 (A.M. Gorlova, O.A. Stonkus, V.P. Pakharukova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gorlova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: PEMFC, proton exchange membrane fuel cell; WGSR, water gas shift reaction; TEM, transmission electron microscopy; DRIFTS, diffuse reflectance infrared Fourier-transformed spectroscopy; XPS, X-ray photoelectron spectroscopy; TOF, turnover frequency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlova, A.M., Simonov, P.A., Stonkus, O.A. et al. Pt/Ce0.75Zr0.25O2 – x Catalysts for Water Gas Shift Reaction: Morphology and Catalytic Properties. Kinet Catal 62, 812–819 (2021). https://doi.org/10.1134/S0023158421060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421060057

Keywords:

Navigation