Skip to main content
Log in

Methanol to Aromatic Reaction over HZSM-5: Co-Effect Desilication and SiO2 Deposition

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this work Si/HZSM-5-0.09M catalyst was prepared using desilication and regrowth of SiO2 method, which was characterized by XRF, XRD, SEM, NH3-TPD, and N2 adsorption/desorption. Meanwhile, the structure–activity relationship was comprehensively discussed. The results revealed that the aromatics total selectivity of Si/HZSM-5-0.09M catalyst was significantly improved, from 33 to 54.8% compared to HZSM-5 under the optimal conditions. Also, the selectivity of p-xylene over Si/HZSM-5-0.09M catalyst increased from 4.6 to 19.8% compared to HZSM-5. The total selectivity of benzene, toluene, and xylene over Si/HZSM-5-0.09M catalyst was significantly improved by 66.1% compared to that of HZSM-5. Thus, an excellent catalytic effect has been found, which indicates that the SiO2 deposition on the surface favors the enhancement of the p-xylene selectivity in the methanol aromatization reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Olah, G.A., Goeppert, A., and Prakash, G.S., J. Org. Chem., 2009, vol. 74, p. 487.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, Y., Tan, W., and Wu, H., Catal. Today, 2011, vol. 60, p. 179.

    Article  Google Scholar 

  3. Jiang, G.Y., Zhang, L., and Zhao, Z., Appl. Catal., A, 2008, vol. 340, p. 176.

  4. Wang, C.F., Zhang, Q., and Zhu, Y.F., Mol. Catal., 2017, vol. 433, p. 242.

    Article  CAS  Google Scholar 

  5. Weber, J.L., Dugulan, I., and Jongh, P.E.D., ChemCatChem, 2017, vol. 10, p. 1107.

    Article  Google Scholar 

  6. Jia, L.Y., Raad, M., and Hamieh, S., Green. Chem., 2017, vol. 19, p. 5442.

    Article  CAS  Google Scholar 

  7. Cui, Z.M., Liu, Q., and Song, W.G., Angew. Chem. Int. Ed., 2006, vol. 118, p. 6662.

    Article  Google Scholar 

  8. Konnov, S.V., Pavlov, V.S., Ivanova, II., and Khadzhiev, S.N., Petrol. Chem., 2016, vol. 56, p. 1154.

    Article  CAS  Google Scholar 

  9. Haw, J.F., Song, W., Marcus, D.M., and Nicholas, J.B., Acc. Chem. Res., 2003, vol. 36, p. 317.

    Article  CAS  PubMed  Google Scholar 

  10. Unni, O., Stian, S., Morten, B., Pablo, B., Finn, J., and Silvia, B., Angew. Chem, Int. Ed., 2012, vol. 51, p. 5810.

    Article  Google Scholar 

  11. Schulz, H., Catal. Today, 2010, vol. 154, p. 183.

    Article  CAS  Google Scholar 

  12. Li, W.L., Li, F., Wang, H.Y., Liao, M.J., Li, P., Zheng, J.J., and Tu, C.Y., Mol. Catal., 2020, vol. 480, p. 1.

    Google Scholar 

  13. Wang, X.N., Zhang, J.F., and Zhang, T., RSC. Adv., 2016, vol. 6, p. 23428.

    Article  CAS  Google Scholar 

  14. Ghavipour, M., Behbahani, R.M., and Moradi, G.R., Fuel, 2013, vol. 113, p. 310.

    Article  CAS  Google Scholar 

  15. Zhang, G., Xin, Z., and Bai, T., J. Energy Chem., 2015, vol. 24, p. 108.

    Article  Google Scholar 

  16. Tian, H., Lv, J., Liang, X., and Zha, F., Energy Technol.-Ger., 2018, vol. 119, p. 1.

    Google Scholar 

  17. Sònia, A., Bonilla A. Pérez-Ramírez, J, Appl. Catal., A, 2009, vol. 364, p. 191.

  18. Mochizuki, H., Yokoi, T., and Imai, H., Appl. Catal., A, 2012, vol. 449, p. 188.

  19. Lu, P., Fei, Z.Y., and Li, L., Appl. Catal., A, 2013, vol. 453, p. 302.

  20. Dong, P., Li, Z.Y., and Wang, D.L., Catal. Lett., 2018, vol. 149, p. 248.

    Article  Google Scholar 

  21. Groen, J.C., Bach, T., and Ziese, U., J. Am. Chem. Soc., 2005, vol. 127, p. 10792.

    Article  CAS  PubMed  Google Scholar 

  22. Unni, O., Stian, S., Morten, B., Pablo, B., Finn, J., and Silvia, B., Angew. Chem., Int. Ed., 2012, vol. 51, p. 5810.

    Article  Google Scholar 

  23. Schulz, H., and Wei, M., Top. Catal., 2014, vol. 57, p. 683.

    Article  CAS  Google Scholar 

  24. Liu, Z., Dong, X., and Liu, X., Catal. Sci. Technol., 2016, vol. 6, p. 8157.

    Article  CAS  Google Scholar 

  25. Xin, H., Li, X., and Fang, Y., J. Catal. 2014, vol. 312, p. 204.

    Article  CAS  Google Scholar 

  26. Mores, D., Kornatowski, J., and Olsbye, U., J. Chem. Eur., 2011, vol. 17, p. 2874.

    Article  CAS  Google Scholar 

  27. Rownaghi, A.A., Rezaei, F., and Hedlund, J., Microporous Mesoporous Mater., 2012, vol. 151, p. 26.

    Article  CAS  Google Scholar 

  28. Li, N., Meng, C., and Liu, D.H., Fuel, 2018, vol. 233, p. 283.

    Article  CAS  Google Scholar 

  29. Gao, P., Xu, J., Qi, G.D., Wang, C.Q., and Zheng, Y.X., ACS Catal., 2018, vol. 8, p. 9809.

    Article  CAS  Google Scholar 

  30. Dai, Q.G., Bai, S.X., Wang, X.Y., and Lu, G.Z., J. Porous. Mater., 2014, vol. 21, p. 1041.

    Article  CAS  Google Scholar 

  31. Liu, F.J., Willhammar, T., and Wang, L., J. Am. Chem. Soc., 2012, vol. 134, p. 4557.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, T., Zhang, Q., and Song, H., J. Catal., 2012, vol. 295, p. 232.

    Article  CAS  Google Scholar 

  33. Wang, N., Hou, Y., Sun, W., Cai, D., Chen, Z., and Liu, L., Appl. Catal., B, 2019, vol. 243, p. 721.

    Article  CAS  Google Scholar 

  34. Sugi, Y., Kubota, Y., and Komura, K., Appl. Catal., A, 2006, vol. 299, p. 157.

  35. Xin, H.C., Li, X.P., and Li, X.P., J. Catal., 2014, vol. 312, p. 204.

    Article  CAS  Google Scholar 

  36. Groen, J.C., Peffer, L.A.A., and Pérez-Ramírez, J., Microporous Mesoporous Mater., 2003, vol. 60, p. 1.

    Article  CAS  Google Scholar 

  37. Kwok, K.M., Ong, S.W.D., Chen, L.W., and Zeng, H.C., ACS Appl., 2019, vol. 11, p. 14774.

    CAS  Google Scholar 

  38. Hasan, Z., Jun, J.W., and Kim, C.U., Mater. Res. Bull., 2015, vol. 61, p. 469.

    Article  CAS  Google Scholar 

  39. Wan, W.L., Fu, T.J., Qi, R.Y., and Li, Z., Ind. Eng. Chem. Res., 2016, vol. 55, p. 13040.

    Article  CAS  Google Scholar 

  40. Pérez-Ramírez, J., Christensen, C.H., and Egeblad, K., Chem. Soc. Rev., 2008, vol. 37, p. 2530.

    Article  PubMed  Google Scholar 

  41. Zhang, J.G., Qian, W.Z., Kong, C.H., and Wei, F., ACS Catal., 2015, vol. 5, p. 2982.

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge financial support from the National Natural Science Foundation of China (no. 21666019) and the science and technology support project of Gansu province (1604GKCD026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixian Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviarions: BTX, benzene-toluent-xylene; MTG, methanol to gasoline; MTO, methanol to olefins; MTP, methanol to propylene; MTA, methanol to aromatic; MTH, methanol to hydrocarbon; TEOS, tetraethoxysilane; XRD, X-ray diffraction; SEM, scanning electron microscopy; XRF, X-ray fluorescence analysis; NH3-TPD, temperature-programmed desorption of NH3; L, Lewis acid sites; B, Brönsted acid sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui Li, Dong, P., Ji, D. et al. Methanol to Aromatic Reaction over HZSM-5: Co-Effect Desilication and SiO2 Deposition. Kinet Catal 62, 418–427 (2021). https://doi.org/10.1134/S0023158421030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421030058

Keywords:

Navigation