Skip to main content
Log in

Molecular Organization of Reagents in the Kinetics and Catalysis of Liquid-Phase Reactions: XIII. Cyclic Transition States Involving Solvent Molecules in the Mechanism of Aminolysis of Cyclocarbonates in an Alcohol Medium

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Trends in the influence of a proton-donor solvent on the reaction of aminolysis of ethylene carbonate, which proceeds through concerted and stepwise mechanisms, are studied. The study is based on kinetic data of model reactions in alcohol solutions and results of DFT quantum chemical calculations of reaction paths that involve hydrogen-bonded transition states and intermediates containing different numbers of solvent molecules in the proton-transfer and stabilization cycles. The calculated data on the activation energies of the reaction, which includes cycles of different sizes, indicate that the stepwise mechanism is preferable compared to the concerted one when the reaction proceeds in methanol. The activation barrier of the stepwise path of the reaction is lower by 2.9 kcal/mol than that for the concerted path. Only the proton-transfer cycle is essential for the progress of the reaction, and the presence of a stabilization cycle does not lead to a decrease in the activation barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Guan, J., Song, Y., Lin,Y., Yin, X., Zuo, M., Zhao, Y., Tao, X., and Zheng, Q., Ind. Eng. Chem. Res., 2011, vol. 50, no. 11, p. 6517.

    Article  CAS  Google Scholar 

  2. Figovsky, O., Shapovalov, L., Leykin, A., Birukova, O., and Potashnikova, R., PU Mag., 2013, vol. 10, no. 4, p. 1.

    Google Scholar 

  3. Nohra, B., Candy, L., Blanco, J.-F., Guerin, C., Raoul, Y., and Mouloungui, Z., Macromolecules, 2013, vol. 46, no. 10, p. 3771.

    Article  CAS  Google Scholar 

  4. Blattmann, H., Fleischer, M., Bähr, M., and Mülhaupt, R., Macromol. Rapid Commun., 2014, vol. 35, no. 14, p. 1238.

    Article  CAS  Google Scholar 

  5. Rokicki, G., Parzuchowski, P.G., and Mazurek, M., Polym. Adv. Technol., 2015, vol. 26, no. 7, p. 707.

    Article  CAS  Google Scholar 

  6. Maisonneuve, L., Lamarzelle, O., Rix, E., Grau, E., and Cramail, H., Chem. Rev., 2015, vol. 115, p. 12407.

    Article  CAS  Google Scholar 

  7. Cornille, A., Auvergne, R., Figovsky, O., Boutevin, B., and Caillol, S., Eur. Polym. J., 2017, vol. 87, p. 535.

    Article  CAS  Google Scholar 

  8. Błażek, K. and Datta, J., Crit. Rev. Environ. Sci. Technol., 2019, vol. 49, no. 3, p. 173.

    Article  Google Scholar 

  9. Carré, C., Ecochard, Y., Caillol, S., and Avérous, L., ChemSusChem, 2019, vol. 12, no. 15, p. 3410.

    Article  Google Scholar 

  10. Garipov, R.M., Sysoev, V.A., Mikheev, V.V., Zagidullin, A.I., Deberdeev, R.Ya., Irzhak, V.I., and Berlin, A.A., Dokl. Phys. Chem., 2003, vol. 52, no. 1, p. 61.

    Google Scholar 

  11. Zabalov, M.V., Tiger, R.P., and Berlin, A.A., Dokl. Chem., 2011, vol. 441, no. 4, p. 345.

    Article  Google Scholar 

  12. Zabalov, M.V., Tiger, R.P., and Berlin, A.A., Russ. Chem. Bull., 2012, vol. 61, p. 518.

    Article  CAS  Google Scholar 

  13. Levina, M.A., Krasheninnikov, V.G., Zabalov, M.V., and Tiger, R.P., Polym. Sci., Ser. B, 2014, vol. 56, no. 2, p. 139.

    Article  CAS  Google Scholar 

  14. Zabalov, M.V., Levina, M.A., Krasheninnikov, V.G., and Tiger, R.P., Russ. Chem. Bull., 2014, vol. 63, p. 1740.

    Article  CAS  Google Scholar 

  15. Zabalov, M.V. and Tiger, R.P., Russ. Chem. Bull., 2016, vol. 65, p. 631.

    Article  CAS  Google Scholar 

  16. Levina, M.A., Zabalov, M.V., Krasheninnikov, V.G., and Tiger, R.P., Polym. Sci., Ser. B, 2017, vol. 59, no. 5, p. 317.

    Article  Google Scholar 

  17. Zabalov, M.V. and Tiger, R.P., Theor. Chem. Acc., 2017, vol. 136, Article 95.

    Article  Google Scholar 

  18. Levina, M.A., Zabalov, M.V., Krasheninnikov, V.G., and Tiger, R.P., Polym. Sci., Ser. B, 2018, vol. 60, p. 563.

    Article  CAS  Google Scholar 

  19. Zabalov, M.V., Levina, M.A., Krasheninnikov, V.G., and Tiger, R.P., React. Kinet. Mech. Catal., 2020, vol. 129, no. 1, p. 65.

    Article  Google Scholar 

  20. Perdew, J.P., Burke, K., and Ernzerhoff, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.

    Article  CAS  Google Scholar 

  21. Ernzerhoff, M. and Scuseria, G.E., J. Chem. Phys., 1999, vol. 110, no. 11, p. 5029.

    Article  Google Scholar 

  22. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  23. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, no. 3, p. 820.

  24. Entelis, S.G. and Tiger, R.P., Kinetika reaktsii v zhidkoi faze: kolichestvennyi uchet vliyaniya sredy (Kinetics of Liquid Phase Reactions: Quantitative Evaluation of Effect of Medium), Moscow: Khimiya, 1973.

Download references

Funding

This study was conducted within the framework of State Assignment no. 0082-2019-0003, topic no. AAAA-A20-120021090129-9, and was supported by the Russian Foundation for Basic Research, project no. 17-03-00146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zabalov.

Additional information

Translated by O. Kadkin

Abbreviations: DFT, density functional theory; IRC, intrinsic reaction coordinate; RC, prereaction complex; TS, transition state; I, intermediate; SR, solvated reagent; c(1), proton-transfer cycle; c(2), stabilization cycle; PC, solvated product complex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabalov, M.V., Levina, M.A. & Tiger, R.P. Molecular Organization of Reagents in the Kinetics and Catalysis of Liquid-Phase Reactions: XIII. Cyclic Transition States Involving Solvent Molecules in the Mechanism of Aminolysis of Cyclocarbonates in an Alcohol Medium. Kinet Catal 61, 721–729 (2020). https://doi.org/10.1134/S0023158420050134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050134

Keywords:

Navigation