Skip to main content
Log in

Design and Characterization of Nanocomposite Catalysts for Biofuel Conversion into Syngas and Hydrogen in Structured Reactors and Membranes

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

This review considers the problems associated with the development and operation of highly active and stable structured catalysts for biogas/biofuel conversion into syngas and hydrogen based on nanocrystalline oxides with fluorite, perovskite, and spinel structures and their nanocomposites promoted by nanoparticles of platinum group metals and alloys based on nickel. The design of these catalysts is based on finding the relationships between the methods of their synthesis, composition, real structure/microstructure, surface properties, and oxygen mobility and reactivity largely determined by the metal–support interaction. This requires the use of modern structural, spectroscopic, kinetic methods, and mathematical modeling. Thin layers of optimized catalysts deposited on structured heat-conducting supports demonstrated high activity and resistance to carbonization in the processes of biogas and biofuels conversion into syngas, and catalysts deposited on asymmetric ceramic membranes with mixed ionic–electronic conductivity allowed oxygen or hydrogen to be separated from complex mixtures with 100% selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Graves, C., Ebbesen, S.D., Mogensen, M., and Lackner, K.S., Renew. Sust. Energ. Rev., 2011, vol. 15, p. 1.

    Article  CAS  Google Scholar 

  2. Vlachos, D.G. and Caratzoulas, S., Chem. Eng. Sci., 2010, vol. 65, p. 18.

    Article  CAS  Google Scholar 

  3. Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., and Sun, Y., Catal. Today, 2009, vol. 148, p. 221.

    Article  CAS  Google Scholar 

  4. Usman, M., WanDaud, W.M.A., and Abbas, H.F., Renew. Sust. Energ. Rev., 2015, vol. 45, p. 710.

    Article  CAS  Google Scholar 

  5. Kumar, N., Shojaee, M., and Spivey, J.J., Curr. Opin. Chem. Eng., 2015, vol. 9, p. 8.

    Article  CAS  Google Scholar 

  6. Tomishige, K., Li, D., Tamura, M., and Nakagawa, Y., Catal. Sci. Technol., 2017, vol. 7, p. 3952.

    Article  CAS  Google Scholar 

  7. Pakhare, D. and Spivey, J., Chem. Soc. Rev., 2014, vol. 43, p. 7813.

    Article  CAS  PubMed  Google Scholar 

  8. Al-Fatesh, A.S., Ibrahim, A.A., Haider, S., and Fakeeha, A.H., J. Chin. Chem. Soc., 2013, vol. 60, p. 1297.

    Article  CAS  Google Scholar 

  9. Li, D., Li, X., and Gong, J., Chem. Rev., 2016, vol. 116, p. 11529.

    Article  CAS  PubMed  Google Scholar 

  10. Vaidya, P.D. and Rodrigues, A.E., Chem. Eng. J., 2006, vol. 117, p. 39.

    Article  CAS  Google Scholar 

  11. Chen, J., Sun, J., and Wang, Y., Ind. Eng. Chem. Res., 2017, vol. 56, no. 16, p. 4627.

    Article  CAS  Google Scholar 

  12. Chattanathan, S.A., Adhikari, S., and Abdoulmoumine, N., Renew. Sust. Energ. Rev., 2012, vol. 16, p. 2366.

    Article  CAS  Google Scholar 

  13. Llorca, J., Cortes Corberan, V., Divins, N. J., Fraile, R.O., and Taboada, E., Hydrogen from Bioethanol, in Renewable Hydrogen Technologies: Production, Purification, Storage, Application and Safety, Amsterdam: Elsevier, 2013, p. 135.

    Google Scholar 

  14. Bion, N., Eprona, F., and Duprez, D., Catalysis, 2010, vol. 22, p. 1.

    CAS  Google Scholar 

  15. Contreras, J.L., Salmones, J., Colín-Luna, J.A., Nuno, L., Quintana, B., Cordova, I., Zeifert, B., Tapia, C., and Fuentes, G.A., Int. J. Hydrogen Energy, 2014, vol. 39, p. 18835.

    Article  CAS  Google Scholar 

  16. Hou, T., Zhang, S., Chen, Y., Wang, D., and Cai, W., Renew. Sust. Energ. Rev., 2015, vol. 44, p. 132.

    Article  CAS  Google Scholar 

  17. Sharma, Y.C., Kumar, A., Prasad, R., and Upadhyay, S.N., Renew. Sust. Energ. Rev., 2017, vol. 74, p. 89.

    Article  CAS  Google Scholar 

  18. Silva, J.M., Soria, M.A., and Madeira, L.M., Renew. Sust. Energ. Rev., 2015, vol. 42, p. 1187.

    Article  CAS  Google Scholar 

  19. Papageridis, K.N., Siakavelas, G., Charisiou, N.D., Avraam, D.G., Tzounis, L., Kousi, K., and Goula, M.A., Fuel Process. Technol., 2016, vol. 152, p. 156.

    Article  CAS  Google Scholar 

  20. Hu, X. and Lu, G., Appl. Catal., B, 2010, vol. 99, p. 289.

    Article  CAS  Google Scholar 

  21. De, S., Zhang, J., Luque, R., and Yan, N., Energy Environ. Sci., 2016, vol. 9, p. 3314.

    Article  CAS  Google Scholar 

  22. Sadykov, V., Bobrova, L., Pavlova, S., Simagina, V., Makarshin, L., Parmon, V., Ross, J.R.H., Van Veen, A.C., and Mirodatos, C., Syngas Generation from Hydrocarbons and Oxygenates with Structured Catalysts, New York: Nova Science, 2012, p. 140.

  23. Sadykov, V.A., Pavlova, S.N., Alikina, G.M., Sazonova, N.N., Mezentseva, N.V., Arapova, M.V., Rogov, V.A., Krieger, T.A., Ishhenko, A.V., Gulyaev, R.V., Zadesenets, A.V., Roger, A.-C., Chan-Thaw, C.E., and Smorygo, O., Perovskite-Based Catalysts for Transformation of Natural Gas and Oxygenates into Syngas, in Perovskite: Crystallography, Chemistry and Catalytic Performance, Zhang, J. and Li, H., Eds., New York: Nova Science, 2013, p. 1.

    Google Scholar 

  24. Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaga, T., Kikuchi, R., and Eguchi, K., Appl. Catal., B, 2007, vol. 74, p. 144.

    Article  CAS  Google Scholar 

  25. Sadykov, V.A., Mezentseva, N.V., Alikina, G.M., Bunina, R.V., Pelipenko, V.V., Lukashevich, A.I., Vostrikov, Z.Y., Rogov, V.A., Krieger, T.A., Ishchenko, A.V., Zaikovskii, V.I., Bobrova, L.N., Ross, J.R., Smorygo, O.L., and Smirnova, A. et al., Nanocomposite catalysts for steam reforming of methane and biofuels: design and performance, in Nanocomposite Materials, Theory and Applications, Vienna: INTECH, 2011, p. 909.

    Google Scholar 

  26. Wang, Z., Wang, C., Chen, S., and Liu, Y., Int. J. Hydrogen Energy, 2014, vol. 39, p. 5644.

    Article  CAS  Google Scholar 

  27. Kapokova, L., Pavlova, S., Bunina, R., Alikina, G., Krieger, T., Ishchenko, A., Rogov, V., and Sadykov, V., Catal. Today, 2011, vol. 164, p. 227.

    Article  CAS  Google Scholar 

  28. Pavlova, S., Kapokova, L., Bunina, R., Alikina, G., Sazonova, N., Krieger, T., Ishchenko, A., Rogov, V., Gulyaev, R., Sadykov, V., and Mirodatos, C., Catal. Sci. Technol., 2012, vol. 2, p. 2099.

    Article  CAS  Google Scholar 

  29. Sadovskaya, E.M., Frolov, D.D., Goncharov, V.B., Fedorova, A.A., Morozov, I.V., Klyushin, A.Yu., Vinogradov, A.S., Smal, E.A., and Sadykov, V.A., Catal. Sustainable Energy, 2016, vol. 3, p. 25.

    CAS  Google Scholar 

  30. Sadykov, V., Zarubina, V., Pavlova, S., Krieger, T., Alikina, G., Lukashevich, A., Muzykantov, V., Sadovskaya, E., Mezentseva, N., Zevak, E., Belyaev, V., and Smorygo, O., Catal. Today, 2010, vol. 156, p. 173.

    Article  CAS  Google Scholar 

  31. Sadykov, V., Eremeev, N., Sadovskaya, E., Bobin, A., Ishchenko, A., Pelipenko, V., Muzykantov, V., Krieger, T., and Amanbaeva, D., Solid State Ionics, 2015, vol. 273, p. 35.

    Article  CAS  Google Scholar 

  32. Sadykov, V., Usoltsev, V., Yeremeev, N., Mezentseva, N., Pelipenko, V., Krieger, T., Belyaev, V., Sadovskaya, E., Muzykantov, V., Fedorova, Yu., Ishchenko, A., Salanov, A., Okhlupin, Yu., Uvarov, N., and Smorygo, O., et al, J. Eur. Ceram. Soc., 2013, vol. 33, p. 2241.

    Article  CAS  Google Scholar 

  33. Sadykov, V.A., Krasnov, A.V., Fedorova, Yu.E., Lukashevich, A.I., Bespalko, Yu.N., Eremeev, N.F., Skriabin, P.I., Valeev, K.R., and Smorygo, O.L., Int. J. Hydrogen Energy, 2018 (in press). https://doi.org/10.1016/j.ijhydene.2018.02.182

  34. Vernikovskaya, N.V., Bobrova, L.N., Pinaeva, L.G., Sadykov, V.A., Zolotarskii, I.A., Sobyanin, V.A., Buyakou, I., Kalinin, V., and Zhdanok, S., Chem. Eng. J., 2007, vol. 134, p. 180.

    Article  CAS  Google Scholar 

  35. Bobrova, L., Vernikovskaya, N., and Sadykov, V., Catal. Today, 2009, vol. 144, p. 185.

    Article  CAS  Google Scholar 

  36. Shelepova, E., Vedyagin, A., Sadykov, V., Mezentseva, N., Fedorova, Y., Smorygo, O., Klenov, O., and Mishakov, I., Catal. Today, 2016, vol. 268, p. 103.

    Article  CAS  Google Scholar 

  37. Bobrova, L.N., Sadykov, V.A., Mezentseva, N.V., Pelipenko, V.V., Vernikovskaya, N.V., Klenov, O.P., and Smorygo, O.L., Int. J. Hydrogen Energy, 2016, vol. 41, no. 8, p. 4632.

    Article  CAS  Google Scholar 

  38. Smorygo, O.L., Sadykov, V.A., and Bobrova, L.N., Open Cell Foams as Substrates For Design of Structured Catalysts, Solid Oxide Fuel Cells and Supported Asymmetric Membrane, New York: Nova Science, 2016, p. 207.

  39. Reddy, B.M., Kumar, T.V., and Durgasri, N., Catalysis by Ceria and Related Materials, Trovarelli, A. and Fornasiero, P., Eds., Imperial College, 2013, 2nd ed., p. 397.

    Google Scholar 

  40. Pechini, M.P., US Patent 3330697, 1967.

  41. Sadykov, V.A., Simonov, M.N., Mezentseva, N.V., Pavlova, S.N., Fedorova, Yu.E., Bobin, A.S., Bespalko, Yu.N., Ishchenko, A.V, Krieger, T.A., Glazneva, T.S., Larina, T.V., Cherepanova, S.V., Kaichev, V.V., Saraev, A.A., and Chesalov, Yu.A. et al., Open Chem., 2016, vol. 14, p. 363.

    Article  CAS  Google Scholar 

  42. Martins, M.L., Florentino, A.O., Cavalheiro, A.A., Silva, R.I.V., Dos Santos, D.I., and Saeki, M.J., Ceram. Int., 2014, vol. 40, p. 16023.

    Article  CAS  Google Scholar 

  43. Arapova, M.V., Pavlova, S.N., Rogov, V.A., Krieger, T.A., Ishchenko, A.V., and Roger, A.-C., Catal. Sustainable Energy, 2014, vol. 1, p. 10.

    Google Scholar 

  44. Sui, R. and Charpentier, P., Chem. Rev., 2012, vol. 112, no. 6, p. 3057.

    Article  CAS  PubMed  Google Scholar 

  45. Smirnova, M.Y., Pavlova, S.N., Krieger, T.A., Bespalko, Y.N., Anikeev, V.I., Chesalov, Y.A., Kaichev, V.V., Mezentseva, N.V., and Sadykov, V.A., J. Phys. Chem. B, 2017, vol. 11, no. 8, p. 1312.

    CAS  Google Scholar 

  46. Smirnova, M.Yu., Bobin, A.S., Pavlova, S.N., Ishchenko, A.V., Selivanova, A.V., Kaichev, V.V., Cherepanova, S.V., Krieger, T.A., Arapova, M.V., Roger, A.-C., Adamski, A., and Sadykov, V.A, Open Chem., 2017, vol. 15, p. 412.

    Article  CAS  Google Scholar 

  47. Advanced Nanomaterials for Catalysis and Energy. Synthesis, Characterization and Applications, Sadykov, V.A., Ed., Amsterdam: Elsevier, 2019. 567 p.

    Google Scholar 

  48. Hosseini, S.A. and Alvarez-Galvan, M.C., J. Taiwan Inst. Chem. Eng., 2016, vol. 61, p. 261.

    Article  CAS  Google Scholar 

  49. Szijjarto, G.P., Paszti, Z., Sajo, I., Erdohelyi, A., Radnoczi, G., and Tompos, A., J. Catal., 2013, vol. 305, p. 290.

    Article  CAS  Google Scholar 

  50. Hammiche-Bellal, Y., Djadoun, A., Meddour-Boukhobza, L., Benadda, A., Auroux, A., Berger, M.-H., and Mernache, F., Mater. Chem. Phys., 2016, vol. 177, p. 384.

    Article  CAS  Google Scholar 

  51. Saberi, A., Golestani-Fard, F., Sarpoolaky, H., Willert-Porada, M., Gerdes, T., and Simonc, R., J. Alloys Compd., 2008, vol. 462, p. 142.

    Article  CAS  Google Scholar 

  52. Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., Catal. Commun., 2005, vol. 6, p. 497.

    Article  CAS  Google Scholar 

  53. Martins, M.L., Florentino, A.O., Cavalheiro, A.A., Silva, R.I.V., Dos Santos, D.I., and Saeki, M.J., Ceram. Int., 2014, vol. 40, p. 16023.

    Article  CAS  Google Scholar 

  54. Gama, L., Ribeiro, M.A., Barros, B.S., Kiminami, R.H.A., Weber, I.T., and Costa, A.C.F.M., J Alloys Compd., 2009, vol. 483, p. 453.

    Article  CAS  Google Scholar 

  55. Muroyama, H., Nakase, R., Matsui, T., and Eguchi, K., Int. J. Hydrogen Energy, 2010, vol. 35, p. 1575.

    Article  CAS  Google Scholar 

  56. Mobini, S., Meshkani, F., and Rezaei, M., J. Environ. Chem. Eng., 2017, vol. 5, p. 4906.

    Article  CAS  Google Scholar 

  57. Kim, H.-N., Kim, J.-M., Kim, M.-J., Ko, J.-W., Park, Y.-J., Lee, K., and Choi, D.H., Ceram. Int., 2017, vol. 43, p. 11312.

    Article  CAS  Google Scholar 

  58. Camargo, M.T.T., Jacques, Q., Caliman, L.B., Miagava, J., Hotza, D., Castro, R.H.R., and Gouvêa, D., Mater. Lett., 2016, vol. 171, p. 232.

    Article  CAS  Google Scholar 

  59. Giannakas, A.E., Ladavos A.K., Armatas, G.S., and Pomonis, P.J., Appl. Surf. Sci., 2007, vol. 253, p. 6969.

    Article  CAS  Google Scholar 

  60. Cosovic, A.R., Zak, T., Glisic, S.B., Sokic, M.D., Lazarevic, S.S., Cosovic, V.R., and Orlovic, A.M., J. Supercrit. Fluids, 2016, vol. 113, p. 96.

    Article  CAS  Google Scholar 

  61. Rahmat, N., Yaakob, Z., Pudukudy, M., Rahman, N.A., and Jahaya, S.S., Powder Technol., 2018, vol. 329, p. 409.

    Article  CAS  Google Scholar 

  62. Sadykov, V.A., Kriventsov, V.V., Moroz, E.M., Borchert, Yu.V., Zyuzin, D.A., Kol’ko, V.P., Kuznetsova, T.G., Ivanov, V.P., Boronin, A.I., Mezentseva, N.V., Burgina, E.B., and Ross, J., Solid State Phenom., 2007, vol. 128, p. 81.

    Article  CAS  Google Scholar 

  63. Sadykov, V.A., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Borchert, Yu.V., Kuznetsova, T.G., Ivanov, V.P., Trukhan, S.N., Paukshtis, E.A., Muzykantov, V.S., Kuznetsov, V.L., Rogov, V.A., Ross, J., Kemnitz, E., and Mirodatos, C., Solid State Phenom., 2007, vol. 128, p. 239.

    Article  CAS  Google Scholar 

  64. Kol`ko, V., Zyuzin, D., Sadykov, V., Kriventsov, V., and Moroz, E., Glass Phys. Chem., 2007, vol. 33, no. 4, p. 470.

    Google Scholar 

  65. Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., Frolova, Yu.V., Lukashevich, A.I., Muzykantov, V.S., Rogov, V.A., Batuev, L.Ch., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.A., Paukshtis, E.A., Burgina, E.B., Trukhan, S.N., et al., Ceria-based fluorite-like oxide solid solutions promoted by precious metals as catalysts of methane transformation into syngas, in New Topics in Catalysis Research, McReynolds, D.K., New York: Nova Science, 2007, p. 97.

  66. Kuznetsova, T.G. and Sadykov, V.A., Kinet. Catal., 2008, vol. 49, no. 6, p. 840.

    Article  CAS  Google Scholar 

  67. Sadykov, V., Mezentseva, N., Simonov, M., Smal, E., Arapova, M., Pavlova, S., Fedorova, Y., Chub, O., Bobrova, L., Kuzmin, V., Ishchenko, A., Krieger, T., Roger, A.-C., Parkhomenko, K., and Mirodatos, C., et al., Int. J. Hydrogen Energy, 2015, vol. 40, p. 7511.

    Article  CAS  Google Scholar 

  68. Sadykov, V., Pavlova, S., Smal, E., Arapova, M., Simonov, M., Mezentseva, N., Rogov, V., Glazneva, T., Lukashevich, A., Roger, A.-C., Parkhomenko, K., van Veen, A., and Smorygo, O., Catal. Today, 2017, vols. 293–294, p. 176.

    Article  CAS  Google Scholar 

  69. Arapova, M.V., Pavlova, S.N., Larina, T.V., Glazneva, T.S., Rogov, V.A., Krieger, T.A., Sadykov, V.A., Smorygo, O.L., Parkhomenko, K., and Roger, A., Hydrogen and syngas production via ethanol steam reforming over supported nickelates, in Materials and Technologies for Energy Efficiency, Mendes-Vilas, A., Ed., Florida: Brown Walker, 2015, p. 131.

    Google Scholar 

  70. Slostowski, C., Marre, S., Babot, O., Toupance, T., and Aymonier, C., Langmuir, 2014, vol. 30, p. 5965.

    Article  CAS  PubMed  Google Scholar 

  71. Ishchenko, A.V., Study of the microstructure of materials of cathodes, anodes and electrolytes of solid oxide fuel cells by transmission electron microscopy, Cand. Sci. Dissertation, Novosibirsk: Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 2017.

  72. Cortés Corberán, V., Rives, V., Mezentseva, N.V., Sadykov, V.A., and Martínez-Tamayo, E., Nanostructured Metal Oxide Catalyst, in Nanotechnology for Sustainable Manufacturing, Rickerb, D., Ed., Boca Raton, FL: CRC Press, 2014, p. 151.

    Google Scholar 

  73. Sadykov, V., Mezentseva, N., Muzykantov, V., Efremov, D., Gubanova, E., Sazonova, N., and Van Veen, A., MRS Proc., 2009, vol. 1122, p. O05-03.

  74. Shmakov, A.N., Cherepanova, S.V., Zyuzin, D.A., Fedorova, Yu.E., Bobrikov, I.A., Roger, A.-C., Adamski, A., and Sadykov, V.A., Open Chem., 2017, vol. 15, p. 438.

    Article  CAS  Google Scholar 

  75. Bengaard, H.S., Norskov, J.K., Sehested, J., Clausen, B.S., Nielsen, L.P., Molenbroek, A.M., and Rostrup-Nielsen, J.R., J. Catal., 2002, vol. 209, p. 365.

    Article  CAS  Google Scholar 

  76. Bulgakov, N., Sadykov, V., Lunin, V., and Kemnitz, E., React. Kinet. Catal. Lett., 2002, vol. 76, no. 1, p. 111.

    Article  CAS  Google Scholar 

  77. Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., Kuznetsova, T.G., Alikina, G.M., Lukashevich, A.I., Potapova, Yu.V., Rogov, V.A., Burgina, E.B., Zaikovskii, V.I., Moroz, E.M., Litvak, G.S., Yakovleva, I.S., Isupova, L.A., and Zyryanov, V.V., et al., Mobility and Reactivity of the Surface and Lattice Oxygen of Some Complex Oxides with Perovskite Structure, in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, Orlovskaya, N. and Browning, N., Eds., Boston: Kluwer Academic, 2004, p. 49.

    Google Scholar 

  78. Sadykov, V., Rogov, V., Ermakova, E., Arendarsky, D., Mezentseva, N., Alikina, G., Sazonova, N., Bobin, A., Pavlova, S., Schuurman, Y., and Mirodatos, C., Thermochim. Acta, 2013, vol. 567, p. 27.

    Article  CAS  Google Scholar 

  79. Bobin, A.S., Sadykov, V.A., Rogov, V.A., Mezentseva, N.V., Alikina, G.M., Sadovskaya, E.M., Glazneva, T.S., Sazonova, N.N., Smirnova, M.Yu., Veniaminov, S.A., Mirodatos, C., Galvita, V., and Marin, G.B., Top. Catal., 2013, vol. 56, p. 958.

    Article  CAS  Google Scholar 

  80. Simonov, M.N., Sadykov, V.A., Rogov, V.A., Bobin, A.S., Sadovskaya, E.M., Mezentseva, N.V., Ishchenko, A.V., Krieger, T.A., Roger, A.-C., and van Veen, A.C., Catal. Today, 2016, vol. 277, p. 157.

    Article  CAS  Google Scholar 

  81. Simonov, M., Rogov, V., Smirnova, M., and Sadykov, V., Catalysts, 2017, vol. 7, no. 9, p. 268.

    Article  CAS  Google Scholar 

  82. Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Kuznetsova, T.G., Prosvirin, I.P., Sadykov, V.A., Schuurman, Y., van Veen, A.C., and Mirodatos, C., Chem. Eng. J., 2014, vol. 257, p. 281.

    Article  CAS  Google Scholar 

  83. Pinaeva, L., Sadovskaya, E., Smal, E., Bobin, A., and Sadykov, V., Chem. Eng. J., 2018, vol. 333, p. 101.

    Article  CAS  Google Scholar 

  84. Sadykov, V.A., Gubanova, E.L., Sazonova, N.N., Pokrovskaya, S.A., Chumakova, N.A., Mezentseva, N.V., Bobin, A.S., Gulyaev, R.V., Ishchenko, A.V., Krieger, T.A., and Mirodatos, C., Catal. Today, 2011, vol. 171, p. 140.

    Article  CAS  Google Scholar 

  85. Mirodatos, C., van Veen, A.C., Pokrovskaya, S.A., Chumakova, N.A., Sazonova, N.N., and Sadykov, V.A., Chem. Eng. J., 2018, vol. 343, p. 530.

    Article  CAS  Google Scholar 

  86. Bitter, J.H., Seshan, K., and Lercher, J.A., J. Catal., 1998, vol. 176, p. 93.

    Article  CAS  Google Scholar 

  87. Larina, T.V., Fedorova, Y.E., Krieger, T.A., Ishchenko, A.V., Glazneva, T.S., Sadovskaya, E.M., Eremeev, N.F., and Sadykov, V.A., Catal. Sustainable Energy, 2017, vol. 4, p. 73.

    CAS  Google Scholar 

  88. Bespalko, Y., Sadykov, V., Eremeev, N., Skryabin, P., Krieger, T., Sadovskaya, E., Bobrova, L., Uvarov, N., Lukashevich, A., Krasnov, A., and Fedorova, Y., Compos. Struct., 2018, vol. 202, p. 1263.

    Article  Google Scholar 

  89. Sadykov, V.A., Kuznetsova, T.G., Frolova, Yu.V., Alikina, G.M., Lukashevich, A.I., Rogov, V.A., Muzykantov, V.S., Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Paukshtis, E.A., Mezentseva, N.V., Batuev, L.Ch., Parmon, V.N., and Neophytides, S., et al., Catal. Today, 2006, vol. 117, p. 475.

    Article  CAS  Google Scholar 

  90. Sadykov, V., Muzykantov, V., Bobin, A., Mezentseva, N., Alikina, G., Sazonova, N., Sadovskaya, E., Lukashevich, A., and Mirodatos, C., Catal. Today, 2010, vol. 157, p. 55.

    Article  CAS  Google Scholar 

  91. Sazonova, N.N., Pavlova, S.N., Pokrovskaya, S.A., Chumakova, N.A., and Sadykov, V.A., Chem. Eng. J., 2009, vol. 154, p. 17.

    Article  CAS  Google Scholar 

  92. Sazonova, N.N., Sadykov, V.A., Bobin, A.S., Pokrovskaya, S.A., Gubanova, E.L., and Mirodatos, C., React. Kinet. Catal. Lett., 2009, vol. 98, p. 35.

    Article  CAS  Google Scholar 

  93. Sadykov, V., Mezentseva, N., Zevak, E., Bobin, A., Krieger, T., Gulayev, R., Ischenko, A., Gubanova, E., Sazonova, N., Alikina, G., Shuurman, Y., and Mirodatos, C., Nanocrystalline doped ceria-zirconia solid solutions promoted by Pt and/or Ni: Structure, surface properties and catalytic performance in reactions of syngas production, First Int. Conf. on Materials for Energy, Extended Abstracts, Book B, Dechema, 2010, p. 845

  94. Yaseneva, P., Pavlova, S., Sadykov, V., Alikina, G., Lukashevich, A., Rogov, V., Belochapkine, S., and Ross, J., Catal. Today, 2008, vol. 137, p. 23.

    Article  CAS  Google Scholar 

  95. Sadykov, V., Sobyanin, V., Mezentseva, N., Alikina, G., Vostrikov, Z., Fedorova, Yu., Pelipenko, V., Usoltsev, V., Tikhov, S., Salanov, A., Bobrova, L., Beloshapkin, S., Ross, J.R.H., Smorygo, O., Ulyanitskii, V., and Rudnev, V., Fuel, 2010, vol. 89, p. 1230.

    Article  CAS  Google Scholar 

  96. Royer, S., Duprez, D., Can, F., Courtois, X., Batiot-Dupeyrat, C., Laassiri, S., and Alamdari, H., Chem. Rev., 2014, vol. 114, p. 10292.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Zhao, Z., and Li, J., ACS Catal., 2014, vol. 4, p. 2917.

    Article  CAS  Google Scholar 

  98. Zhu, H., Zhang, P., and Dai, S., ACS Catal., 2015, vol. 5, p. 6370.

    Article  CAS  Google Scholar 

  99. Evans, E., Staniforth, J.Z., Darton, R.J., and Ormerod, R.M., Green Chem., 2014, vol. 16, p. 4587.

    Article  CAS  Google Scholar 

  100. Gallego, G.S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., and Mondragon, F., Appl. Catal., A, 2008, vol. 334, p. 251.

  101. Gallego, G.S., Marín, J.G., Batiot-Dupeyrat, C., Barrault, J., and Mondragon, F., Appl. Catal., A, 2009, vol. 369, p. 97.

  102. Goldwasser, M.R., Rivas, M.E., Pietri, E., Perez-Zurita, M.J., Cubeiro, M.L., Gingembre, L., Leclercq, L., and Leclercq, G., Appl. Catal., A, 2003, vol. 255, p. 45.

  103. Araujo, G.C., Lima, S.M., Assaf, J.M., Pena, M.A., Garcia Fierro J.L., and Rangel, M.D.C., Catal. Today, 2008, vol. 133–135, p. 129.

    Article  CAS  Google Scholar 

  104. Balat, H. and Kırtay, E., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7416.

    Article  CAS  Google Scholar 

  105. Baruah, R., Dixit, M., Basarkar, P., Parikh, D., and Bhargav, A., Renew. Sust. Energ. Rev., 2015, vol. 51, p. 1345.

    Article  CAS  Google Scholar 

  106. Chen, S.Q. and Liu, Y., Int. J. Hydrogen Energy, 2009, vol. 34, p. 4735.

    Article  CAS  Google Scholar 

  107. Chen, S.Q. and Wang, H., Liu Y., Int. J. Hydrogen Energy, 2009, vol. 34, p. 7995.

    Article  CAS  Google Scholar 

  108. Zhao, L., Wei, Y., Huang, Y., and Liu, Y., Catal. Today, 2016, vol. 259, p. 430.

    Article  CAS  Google Scholar 

  109. Wang, Z., Wang, H., and Liu, Y., RSC Adv., 2013, vol. 3, p. 10027.

    Article  CAS  Google Scholar 

  110. Huang, L., Zhang, F., Wang, N., Chen, R., and Hsu, A.T., Int. J. Hydrogen Energy, 2012, vol. 37, p. 1272.

    Article  CAS  Google Scholar 

  111. Wu, G., Li, S., Zhang, C., Wang, T., and Gong, J., Appl. Catal., B, 2014, vol. 144, p. 277.

    Article  CAS  Google Scholar 

  112. Surendar, M., Sagar, T.V., Raveendra, G., Ashwani Kumar, M., Lingaiah, N., Rama Rao, K.S., and Sai Prasad, P.S., Int. J. Hydrogen Energy, 2016, vol. 41, p. 2285.

    Article  CAS  Google Scholar 

  113. Chen, G., Yao, J., Liu, J., Yan, B., and Shan, R., Renewable Energy, 2016, vol. 91, p. 315.

    Article  CAS  Google Scholar 

  114. Mota, N., Galvan, M.C.A., Al-Zahrani, S.M., Navarro, R.M., and Fierro, J.L.G., Int. J. Hydrogen Energy, 2012, vol. 37, p. 7056.

    Article  CAS  Google Scholar 

  115. Urasaki, K., Tokunaga, K., Sekine, Y., Matsukata, M., and Kikuchi, E., Catal. Commun., 2008, vol. 9, p. 600.

    Article  CAS  Google Scholar 

  116. Chen, H., Yu, H., Peng, F., Yang, G., Wang, H., Yang, J., and Tang, Y., Chem. Eng. J., 2010, vol. 160, p. 333.

    Article  CAS  Google Scholar 

  117. Marinho, A.L.A., Rabelo-Neto, R.C., Noronha, F.B., and Mattos, L.V., Appl. Catal., A, 2016, vol. 520, p. 53.

  118. Lin, K.-H., Wang, C.-B., and Chien, S.-H., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3226.

    Article  CAS  Google Scholar 

  119. Lima, S.M., Silva, A.M., Costa, L.O.O., Assaf, J.M., Jacobs, G., Davis, B.H., Mattos, L.V., and Noronha, F.B., Appl. Catal., A, 2010, vol. 377, p. 181.

  120. Sadykov, V., Mezentseva, N., Fedorova, Yu., Lukashevich, A., Pelipenko, V., Kuzmin, V., Simonov, M., Ishchenko, A., Vostrikov, Z., Bobrova, L., Sadovskaya, E., Muzykantov, V., Zadesenets, A., Smorygo, O., Roger, A.C., and Parkhomenko, K., Catal. Today, 2015, vol. 251, p. 19.

    Article  CAS  Google Scholar 

  121. Martinelli, D.M.H., Melo, D.M.A., Pedrosa, A.M.G., Martinelli, A.E., Melo, M.A.F., and Batista, M.K.S., Mater. Sci. Appl., 2012, vol. 3, p. 363.

    CAS  Google Scholar 

  122. Ammendola, P., Cammisa, E., Lisi, L., and Ruoppolo, G., Ind. Eng. Chem. Res., 2012, vol. 51, p. 7475.

    Article  CAS  Google Scholar 

  123. Zeng, G.M., Shao, J.J., Gu, R.X., and Li, Y.D., Catal. Today, 2014, vol. 233, p. 31.

    Article  CAS  Google Scholar 

  124. Rivas, I., Alvarez, J., Pietri, E., Pe?rez-Zurita, M.J., and Goldwasser, M.R., Catal. Today, 2010, vol. 149, p. 388.

    Article  CAS  Google Scholar 

  125. Zhao, L., Hana, T., Wang, H., Zhang, L., and Liu, Y., Appl. Catal., B, 2016, vol. 187, p. 19.

    Article  CAS  Google Scholar 

  126. Lemonidou, A. and Vasalos, I.A., Appl. Catal., A, 2002, vol. 228, p. 227.

  127. Koo, K., Roh, H-S., Seo, Y.T., Seo, D.J., Yoon, W.L., and Park, S.B., Appl. Catal., A, 2008, vol. 340, p. 183.

  128. Xu, L., Wang, F., Chen, M., Fan, X., Yang, H., Nie, D., and Qi, L., J. CO2 Utili., 2017, vol. 18, p. 1.

  129. Ma, H., Zeng, L., Tian, H., Li, D., Wang, X., Li, X., and Gong, J., Appl. Catal., B, 2016, vol. 181, p. 321.

    Article  CAS  Google Scholar 

  130. Sadykov, V., Chub, O., Chesalov, Yu., Mezentseva, N., Pavlova, S., Arapova, M., Rogov, V., Simonov, M., Roger, A.-C., Parkhomenko, K., and Van Veen, A., Top. Catal., 2016, vol. 59, p. 1332.

    Article  CAS  Google Scholar 

  131. Bobrova, L.N., Bobin, A.S., Mezentseva, N.V., Sadykov, V.A., Thybaut, J.W., and Marin, G.B., Appl. Catal., B, 2016, vol. 182, p. 513.

    Article  CAS  Google Scholar 

  132. Makarshin, L.L., Sadykov, V.A., Andreev, D.V., Gribovskii, A.G., Privezentsev, V.V., and Parmon, V.N., Fuel Process. Technol., 2015, vol. 131, p. 21.

    Article  CAS  Google Scholar 

  133. Ma, Y.H., Advanced Membrane Technology and Applications, New York: Wiley, 2009, p. 671.

    Google Scholar 

  134. Hedayati, A., Ph.D. Thesis, Universitat Politècnica de Catalunya BarcelonaTECH, Barcelona, 2016, p. 5.

  135. Koch, R., López, E., Divins, N.J., Allué, M., Jossen, A., Riera, J., and Llorca, J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 5605.

    Article  CAS  Google Scholar 

  136. Yang, N.-T., Kathiraser, Y., and Kawi, S., Int. J. Hydrogen Energy, 2013, vol. 38, p. 4483.

    Article  CAS  Google Scholar 

  137. Yang, T., Shi, G.M., and Chung, T.-S., Adv. Energy Mater., 2012, vol. 2, p. 1358.

    Article  CAS  Google Scholar 

  138. Mercadelli, E., Montaleone, D., Gondolini, A., Pinasco, P., and Sanson, A., Ceram. Int., 2017, vol. 43, p. 8010.

    Article  CAS  Google Scholar 

  139. Sadykov, V.A., Pavlova, S.N., Kharlamova, T.S., Muzykantov, V.S., Uvarov, N.F., Okhlupin, Yu.S., Ishchenko, A.V., Bobin, A.S., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Krieger, T.A., Larina, T.V., Bulgakov, N.N., and Tapilin, V.M., et al., Perovskites and Their Nanocomposites with Fluorite-Like Oxides as Materials for Solid Oxide Fuel Cells Cathodes and Oxygen-Conducting Membranes: Mobility and Reactivity of the Surface, Bulk Oxygen as a Key Factor of Their Performance, in Perovskites: Structure, Properties and Uses, Borowski, M., Ed., New York: Nova Science, 2010, p. 67.

    Google Scholar 

  140. Magrasó, A. and Haugsrud, R., J. Mater. Chem. A, 2014, vol. 2, p. 12630.

    Article  Google Scholar 

  141. Escolástico, S., Solís, C., Haugsrud, R., Magrasó, A., and Serra, J.M., Int. J. Hydrogen Energy, 2017, vol. 42, p. 11392.

    Article  CAS  Google Scholar 

  142. Bobrova, L.N., Vernikovskaya, N.V., Kagyrmanova, A.P., Kashkin, V.N., and Zolotarskii, I.A., Application of Mathematical Modeling and Simulation to Study the Complexity of the Basic Chemical and Physical Phenomena in Catalytic Reactors, in Mathematical Modeling, Brennan, C.R., Ed., New York: Nova Science, 2012, p. 475.

    Google Scholar 

  143. Vernikovskaya, N.V., Chem. Eng. J., 2017, vol. 329, p. 15.

    Article  CAS  Google Scholar 

  144. Klenov, O.P. and Noskov, A.S., Primenenie vychislitel’noi gidrodinamiki pri modelirovanii kataliticheskikh reaktorov / Mikhail Gavrilovich Slin’ko - sluzhenie nauke i otchestvu (The Use of Computational Fluid Dynamics in Modeling of Catalytic Reactors / Mikhail Gavrilovich Slin’ko, Service to Science and Patronymic), Novosibirsk: Siberian Branch, Russian Academy of Sciences, 2014.

  145. Klenov, O.P., Pokrovskaya, S.A., Chumakova, N.A., Pavlova, S.N., Sadykov, V.A., and Noskov, A.S. Catal. Today, 2009, vol. 144, no. 3–4, p. 258.

    Article  CAS  Google Scholar 

  146. Bobrova, L., Zolotarskii, I., Sadykov, V., Pavlova, S., Snegurenko, O., Tikhov, S., Korotkich, V., Kuznetsova, T., Sobyanin, V., and Parmon, V., Chem. Eng. Sci., 2005, vol. 107, p. 171.

    Article  CAS  Google Scholar 

  147. Bobrova, L., Zolotarsky, I., Sadykov, V., and Sobyanin, V., Int. J. Hydrogen Energy, 2007, vol. 32, no. 16, p. 3698.

    Article  CAS  Google Scholar 

  148. Marengo, S., Comotti, P., and Galli, G., Catal. Today, 2003, vol. 81, p. 205.

    Article  CAS  Google Scholar 

  149. Vagin, D., Bobrova, L., Soloveychik, Yu., Sadykov, V., and Parmon, V., Russian-Spain International Conference, Nanostructured Catalysts and Catalytic Processes for the Innovative Energetics and Sustainable Development, Print-CD vol., 2011, p. 71.

  150. Bobrova, L., Andreev, D., Ivanov, E., Mezentseva, N., Simonov, M., Makarshin, L., Gribovskiy, A., and Sadykov, V., Catalysts, 2017, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  151. Sadykov, V., Bobrova, L., Vostrikov, Z., Vernikovskaya, N., and Mezentseva, N., XII Eur. Cong. on Cat. (EuropaCat-XII), Kazan, 2015, p. 224.

  152. Kechagiopoulos, P.N., Thybaut, J.W., Bobrova, L.N., Sadykov, V.A., and Marin, G.B., 22nd Int. Symp. on Chem. Reac. Eng. (ISCRE 22), Maastricht, 2012, p. 816.

Download references

Funding

Studies of structured catalysts and membranes were carried out in the framework of the state assignment of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. 0303-2016-0013). The authors acknowledge support from the Russian Science Foundation according to project no. 18-73-10 167 on the synthesis of catalysts in a supercritical environment and their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sadykov.

Additional information

Translated by Andrey Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, V.A., Simonov, M.N., Bespalko, Y.N. et al. Design and Characterization of Nanocomposite Catalysts for Biofuel Conversion into Syngas and Hydrogen in Structured Reactors and Membranes. Kinet Catal 60, 582–605 (2019). https://doi.org/10.1134/S0023158419050082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419050082

Keywords:

Navigation