Skip to main content
Log in

Highly Selective Pd–Cu/α-Al2O3 Catalysts for Liquid-Phase Hydrogenation: The Influence of the Pd: Cu Ratio on the Structure and Catalytic Characteristics

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The structure and catalytic characteristics of a series of Pd–Cu/α-Al2O3 catalysts with Pd: Cu ratio varied from Pd1–Cu0.5 to Pd1–Cu4 were studied. The use of α-Al2O3 with a small surface area (Ssp = 8 m2/g) as a support made it possible to minimize the effect of diffusion on the catalytic characteristics and to study the structure of Pd–Cu nanoparticles by X-ray diffraction (XRD) analysis. The XRD analysis and transmission electron microscopy (TEM) data indicated the formation of uniform bimetallic Pd–Cu nanoparticles (d = 20–60 nm), whose composition corresponded to a ratio between the metals in the catalyst, and also the absence of monometallic Pd0 and Cu0 nanoparticles. The study of catalytic properties in the liquid-phase hydrogenation of diphenylacetylene (DPA) showed that the activity of the catalysts rapidly decreased with the Cu content increase; however, in this case, the yield of a desired alkene compound significantly increased. The selectivity of alkene formation on the catalysts with the ratios Pd: Cu = 1: 3 and 1: 4 was superior to the commercial Lindlar catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaser, H.-U., Schnyder, A., Steiner, H., Rössler, F., and Baumeister, P., Handbook of Heterogeneous Catalysis, Knözinger, H., Scheth, F., and Weitkamp, J., Eds., Wiley-VCH, 2008.

  2. Vile, G., Albani, D., Almora-Barrios, N., López, N., and Pérez-Ramírez, J., ChemCatChem, 2016, vol. 8, p. 21.

    Article  CAS  Google Scholar 

  3. Bridier, B., Hevia, M.A.G., López, N., and Pérez-Ramírez, J., J. Catal., 2010, vol. 278, p. 167.

    Article  CAS  Google Scholar 

  4. Liu, X., Mou, C.-Y., Lee, S., Li, Y., Secrest, J., and Jang, B.W.-L., J. Catal., 2012, vol. 285, p. 152.

    Article  CAS  Google Scholar 

  5. Trimm, D.L., Cant, N.W., and Liu, I.O.Y., Catal. Today, 2011, vol. 178, p. 181.

    Article  CAS  Google Scholar 

  6. Molnár, Á., Sárkány, A., and Varga, M., J. Mol. Catal., 2001, vol. 173, p. 185.

    Article  Google Scholar 

  7. Chesnokov, V.V., Chichkan’, A.S., and Ismagilov, Z.R., Kinet. Catal., 2017, vol. 58, no. 5, p. 649.

    Article  CAS  Google Scholar 

  8. Glyzdova, D.V., Smirnova, N.S., Shlyapin, D.A., Tsyrul’nikov, P.G., Leont’eva, N.N., Vershinin, V.I., Gerasimov, E.Y., and Prosvirin, I.P., Kinet. Catal., 2017, vol. 58, no. 2, p. 140.

    Article  CAS  Google Scholar 

  9. Okhlopkova, L.B., Cherepanova, S.V., Prosvirin, I.P., Kerzhentsev, M.A., and Ismagilov, Z.R., Appl. Catal., A, vol. 549, p. 245.

  10. Nikolaev, S.A. and Krotova, I.N., Pet. Chem., 2013, vol. 53, no. 6, p. 394.

    Article  CAS  Google Scholar 

  11. Shesterkina, A.A., Kozlova, L.M., Kirichenko, O.A., Kapustin, G.I., Mishin, I.V., and Kustov, L.M., Rus. Chem. Bull., 2016, vol. 65, no. 2, p. 432.

    Article  CAS  Google Scholar 

  12. Furlong, B.K., Hightower, J.W., Chan, T.Y.-L., Sarkany, A., and Guczi, L., Appl. Catal., A, 1994, vol. 117, p. 41.

    Article  CAS  Google Scholar 

  13. Benedetti, A., Fagherazzi, G., Pinna, F., Rampazzo, G., Selva, M., and Strukul, G., Catal. Lett., 1991, vol. 10, p. 215.

    Article  CAS  Google Scholar 

  14. Guczi, L., Schay, Z., Stefler, Gy., Liotta, L.F., Deganello, G., and Venezia, A.M., J. Catal., 1999, vol. 182, p. 456.

    Article  CAS  Google Scholar 

  15. Nosova, L.V., Zaikovskii, V.I., Kalinkin, A.V., Talzi, E.P., Paukshtis, E.A., and Ryndin, Y.A., Kinet. Catal., 1995, vol. 36, no. 3., p. 328.

    CAS  Google Scholar 

  16. McCue, A.J., Shepherd, A.M., and Anderson, J.A., Catal. Sci. Technol., 2015, vol. 5, p. 2880.

    Article  CAS  Google Scholar 

  17. Zhang, R., Zhang, J., Zhao, B., He, L., Wang, A., and Wang, B., J. Phys. Chem. C, 2017, vol. 121, no. 50, p. 27936.

    Article  CAS  Google Scholar 

  18. McCue, A.J., McRitchie, C.J., Shepherd, A.M., and Anderson, L.A., J. Catal., 2014, vol. 319, p. 127.

    Article  CAS  Google Scholar 

  19. Yang, K. and Yang, B., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 18010.

    Article  CAS  PubMed  Google Scholar 

  20. Lindlar, H. and Dubuis, R., Org. Synth., 1966, vol. 46, p. 89.

    Article  CAS  Google Scholar 

  21. Rajaram, J., Narula, A.P.S., Chawla, H.P.S., and Dev, S., Tetrahedron, 1983, vol. 39, p. 2315.

    Article  CAS  Google Scholar 

  22. Mitsudome, T., Takahashi, Y., Ichikawa, S., Mizugaki, T., Jitsukawa, K., and Kaneda, K., Angew. Chem., 2013, vol. 52, p. 1481.

    Article  CAS  Google Scholar 

  23. Liu, J., Zhu, Ya., Liu, Ch., Wang, X., Cao, Ch., and Song, W., ChemCatChem, 2017, vol. 9, p. 4053.

    Article  CAS  Google Scholar 

  24. Markov, P.V., Bragina, G.O., Baeva, G.N., Tkachenko, O.P., Mashkovsky, I.S., Yakushev, I.A., Kozitsyna, N.Y., Vargaftik, M.N., and Stakheev, A.Y., Kinet. Catal., 2015, vol. 56, no. 5, p. 591.

    Article  CAS  Google Scholar 

  25. Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Tkachenko, O.P., Stakheev, A.Y., Yakushev, I.A., Kozitsyna, N.Y., and Vargaftik, M.N., Russ. Chem. Bull., 2016, no. 2, p. 425.

    Article  CAS  Google Scholar 

  26. Markov, P.V., Bragina, G.O., Rassolov, A.V., Baeva, G.N., Mashkovsky, I.S., Murzin, V.Yu., Zubavichus, Ya.V., and Stakheev, A.Yu., Mendeleev Commun., 2016, vol. 26, no. 6, p. 502.

    Article  CAS  Google Scholar 

  27. Satterfield, C.N., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980.

    Google Scholar 

  28. Kachala, V.V., Khemchyan, L.L., Kashin, A.S., Orlov, N.V., Grachev, A.A., Zalesskiy, S.S., and Ananikov, V.P., Rus. Chem. Rev., 2013, vol. 82, no. 7, p. 648.

    Article  CAS  Google Scholar 

  29. Gavrikov, A.V., Koroteev, P.S., Dobrokhotova, Zh.V., Ilyukhin, A.B., Efimov, N.N., Kirdyankin, D.I., Bykov, M.A., Ryumin, M.A., and Novotortsev, V.M., Polyhedron, 2015, vol. 102, p. 4.

    Article  CAS  Google Scholar 

  30. Bagmut, A.G., Shipkova, I.G., and Zhuchkov, V.A., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2011, vol. 5, no. 3, p. 460.

    Article  CAS  Google Scholar 

  31. Gallagher, J.R., Li, T., Zhao, H., Liu, J., Lei, Yu., Zhang, X., Ren, Ya., Elam, J.W., Meyer, R.J., Winans, R.E., and Miller, J.T., Catal. Sci. Technol., 2014, vol. 4, p. 3053.

    Article  CAS  Google Scholar 

  32. Kerdkool, P. and Niyomwas, S., Procedia Eng., 2012, vol. 32, p. 642.

    Article  CAS  Google Scholar 

  33. Yan, B., Wang, C., Xu, H., Zhang, K., Li, Sh., and Du, Yu., ChemPlusChem, 2017, vol. 82, p. 1121.

    Article  CAS  PubMed  Google Scholar 

  34. Pei, G., Liu, X., Chai, M., Wang, A., and Zhang, T., Chin. J. Catal., 2017, vol. 38, p. 1540.

    Article  CAS  Google Scholar 

  35. Yang, F., Zhang, Ya., Liu, P.-F., Cui, Yi., Ge, X.-R., and Jing, Q.-Sh., Int. J. Hydrogen Energy, 2016, vol. 41, p. 6773.

    Article  CAS  Google Scholar 

  36. Denton, A.R. and Ashcroft, N.W., Phys. Rev. A, 1991, vol. 43, p. 3161.

    Article  CAS  PubMed  Google Scholar 

  37. Lv, J.-J., Lia, Sh.-Sh., Wang, A.-J., Mei, L.-P., Feng, J.-J., Chen, J.-R., and Chen, Z., J. Power Sources, 2014, vol. 269, p. 104.

    Article  CAS  Google Scholar 

  38. Al-Mufachi, N.A. and Steinberger-Wilckens, R., Thin Solid Films, 2018, vol. 646, p. 83.

    Article  CAS  Google Scholar 

  39. Feng, Y.-S., Liu, C., Kang, Y.-M., Zhou, X.-M., Liu, L.-L., Deng, J., Xu, H.-J., and Fu, Y., Chem. Eng. J., 2015, vol. 281, p. 96.

    Article  CAS  Google Scholar 

  40. Marín-Astorga, N., Alvez-Manoli, G., and Reyes, P., J. Mol. Catal. A: Chem., 2005, vol. 226, p. 81.

    Article  CAS  Google Scholar 

  41. Choudary, B.M., Lakshmi Kantam, M., Mahender Reddy, N., Koteswara Rao, K., Haritha, Y., Bhaskar, V., Figueras, F., and Tuel, A., Appl. Catal., A, 1999, vol. 181, p. 139.

    Article  CAS  Google Scholar 

  42. Løvvik, O.M., Surf. Sci., 2005, vol. 583, p. 100.

    Article  CAS  Google Scholar 

  43. Lambert, S., Heinrichs, B., Brasseur, A., Rulmont, A., and Pirard, J.P., Appl. Catal., A, 2004, vol. 270, p. 201.

    Article  CAS  Google Scholar 

  44. Cheng, F., He, X., Chen, Z.-X., and Huang, Y.-G., J. Alloys Compd., 2015, vol. 648, p. 1090.

    Article  CAS  Google Scholar 

  45. Burueva, D.B., Kovtunov, K.V., Bukhtiyarov, A.V., Barskiy, D.A., Prosvirin, I.P., Mashkovsky, I.S., Baeva, G.N., Bukhtiyarov, V.I., Stakheev, A.Yu., and Koptyug, I.V., Chem. Eur. J., 2018, vol. 24, p. 2547.

    Article  CAS  PubMed  Google Scholar 

  46. Rassolov, A.V., Markov, P.V., Bragina, G.O., Baeva, G.N., Mashkovskii, I.S., Stakheev, A.Y., Yakushev, I.A., and Vargaftik, M.N., Kinet. Catal., 2016, vol. 57, no. 6, p. 853.

    Article  CAS  Google Scholar 

  47. Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Baeva, G.N., Rassolov, A.V., Bukhtiyarov, A.V., Prosvirin, I.P., Bukhtiyarov, V.I., and Stakheev, A.Yu., Mendeleev Commun., 2018, vol. 28, no. 2, p. 152.

    Article  CAS  Google Scholar 

  48. Bond, G.C., Metal-Catalysed Reactions of Hydrocarbons, New York: Springer Science + Business Media Inc., 2005.

    Google Scholar 

  49. Markov, P.V., Bragina, G.O., Rassolov, A.V., Mashkovsky, I.S., Baeva, G.N., Tkachenko, O.P., Yakushev, I.A., Vargaftik, M.N., and Stakheev, A.Yu., Mendeleev Commun., 2016, vol. 26, p. 494.

    Article  CAS  Google Scholar 

  50. Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., and Nørskov, J.K., Science, 2008, vol. 320, p. 1320.

    Article  CAS  PubMed  Google Scholar 

  51. Furukawa, S., Yokoyama, A., and Komatsu, T., ACS Catal., 2014, vol. 4, p. 3581.

    Article  CAS  Google Scholar 

  52. Komatsu, T., Takagi, K., and Ozawa, K., Catal. Today, 2011, vol. 164, p. 143.

    Article  CAS  Google Scholar 

  53. Spee, M.P.R., Boersma, J., Meijer, M.D., Slagt, M.Q., van Koten, G., and Geus, J.W., J. Org. Chem., 2011, vol. 66, p. 1647.

    Article  CAS  Google Scholar 

  54. Coq, B. and Figueras, F., J. Mol. Catal. A: Chem., 2011, vol. 173, p. 117

    Article  Google Scholar 

  55. Armbrüster, M., Behrens, M., Cinquini, F., Föttinger, K., Grin, Yu., Haghofer, A., Klötzer, B., Knop-Gericke, A., Lorenz, H., Ota, A., Penner, S., Prinz, J., Rameshan, C., Révay, Z., Rosenthal, D., Rupprechter, G., Sautet, P., Schlögl, R., Shao, L., Szentmiklósi, L., Teschner, D., Torres, D., Wagner, R., Widmer, R., and Wowsnick, G., ChemCatChem, 2012, vol. 4, p. 1048.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mashkovsky.

Additional information

Original Russian Text © P.V. Markov, G.O. Bragina, G.N. Baeva, A.V. Rassolov, I.S. Mashkovsky, A.Yu. Stakheev, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 5, pp. 591–600.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, P.V., Bragina, G.O., Baeva, G.N. et al. Highly Selective Pd–Cu/α-Al2O3 Catalysts for Liquid-Phase Hydrogenation: The Influence of the Pd: Cu Ratio on the Structure and Catalytic Characteristics. Kinet Catal 59, 601–609 (2018). https://doi.org/10.1134/S0023158418050105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418050105

Keywords

Navigation