Skip to main content
Log in

Homopolymerization and copolymerization of vinyl chloride over supported metalorganic catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The homopolymerization of vinyl chloride and its copolymerization with ethylene over dibutyl ether–modified SiO2-supported Ziegler–Natta catalysts based on titanium and vanadium chlorides have been studied. The supported metal complexes are sufficiently active in the polymerization of vinyl chloride. Their activity depends on the catalyst composition and conditions of formation of the catalyst on the surface of the support. The chain structure of the resulting polyvinyl chloride (PVC) has been studied by NMR spectroscopy. The thermal properties of the synthesized PVC have been investigated by differential scanning calorimetry. The PVC obtained possesses enhanced thermal stability owing to the specific features of its chain structure. Vinyl chloride polymerization over the supported metalorganic catalyst proceeds mainly via a free-radical mechanism. Process conditions have been found for conducting the copolymerization of vinyl chloride with ethylene over supported metal complexes resulting in the formation of true statistical copolymers, which is confirmed by IR and NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Starnes, W.H., Jr., Chung, H., Wojciechowski, B.J., Skillicorn, D.E., and Benedikt, G.M., Adv. Chem. Ser., 1996, vol. 249, p. 3.

    Article  CAS  Google Scholar 

  2. Starnes, W.H., Jr., Wojciechowski, B.J., and Chung, H., Macromolecules, 1995, vol. 28, p. 945.

    Article  CAS  Google Scholar 

  3. Benedikt, G.M., Goodall, B.L., Rhodes, L.F., and Kemball, A.C., Macromol. Symp., 1994, vol. 86, p. 65.

    Article  CAS  Google Scholar 

  4. Starnes, W.H., Jr., Wojciechowski, B.J., Velazquez, A., and Benedikt, G.M., Macromolecules, 1992, vol. 25, p. 3638.

    Article  CAS  Google Scholar 

  5. Llauro-Darricades, M.F., Bensemra, N., Guyot, A., and Petiaud, R., Makromol. Chem., Macromol. Symp., 1989, vol. 29, p. 171.

    Article  CAS  Google Scholar 

  6. Starnes, W.H., Jr., Schilling, F.C., Plitz, I.M., Cais, R.E., Freed, D.J., Hartless, R.L., and Bovey, F.A., Macromolecules, 1983, vol. 16, p. 790.

    Article  CAS  Google Scholar 

  7. Starnes, W.H., Jr., Schilling, F.C., Abbas, K.B., Cais, R.E., and Bovey, F.A., Macromolecules, 1979, vol. 12, p. 556.

    Article  CAS  Google Scholar 

  8. Stephensen, R.C. and Smallwood, P.V., Encyclopedia of Polymer Science and Engineering, New York: Wiley, 1989, p. 843.

    Google Scholar 

  9. Poly(vinyl chloride)—Basics and Application, Tokyo: Nikkan Kogyo Shinbun, 1988.

  10. Starnes, W.H., Jr., Procedia Chem., 2012, vol. 4, p. 1.

    Article  CAS  Google Scholar 

  11. Mazurek, V.V., Polimerizatsiya pod deistviem soedinenii perekhodnykh metallov (Polymerization under the Action of Transition Metal Compounds), Leningrad: Nauka, 1974.

    Google Scholar 

  12. Haszeldine, R.N., Hyde, T.G., and Tait, J.T., Polymer, 1973, vol. 14, no. 5, p. 215.

    Article  CAS  Google Scholar 

  13. Tsuchiya, Y. and Endo, K., J. Polym. Sci., Part A: Polym. Chem., 2011, vol. 49, p. 1006.

    Article  CAS  Google Scholar 

  14. Budanova, G.P. and Mazurek, V.V., Vysokomol. Soedin., Ser. A: Fiz. Polim., 1970, vol. 12, no. 5, p. 1062.

    CAS  Google Scholar 

  15. Mazurek, V.V., Nesterchuk, G.T., and Merkur’eva, A.V., Vysokomol. Soedin., Ser. A: Fiz. Polim., 1969, vol. 11, no. 3, p. 611.

    CAS  Google Scholar 

  16. Giannini, U. and Cesca, S., Chim. Ind., 1962, vol. 44, no. 4, p. 371.

    CAS  Google Scholar 

  17. Budanova, G.P. and Mazurek, V.V., Vysokomol. Soedin., Ser. A: Fiz. Polim., 1965, vol. 9, no. 11, p. 2393.

    Google Scholar 

  18. Suzuki, Y. and Saito, M., J. Polym. Sci., Part A: Polym. Chem., 1971, vol. 9, p. 3639.

    Article  CAS  Google Scholar 

  19. Florjanczyk, Z., Kuran, W., Sitkowska, J., and Ziolkowski, A., J. Polym. Sci., Part A: Polym. Chem., 1987, vol. 25, p. 343.

    Article  CAS  Google Scholar 

  20. Ulbricht, J., Giesemann, J., and Gebauer, M., Angew. Makromol. Chem., 1968, vol. 3, p. 69.

    Article  Google Scholar 

  21. Ballard, D.G., Janes, W.H., and Medinger, T., J. Chem. Soc. B, 1968, p. 1168.

    Google Scholar 

  22. Ballard, D.G. and Medinger, T., J. Chem. Soc. B, 1968, p. 1176.

    Google Scholar 

  23. Haszeldine, R.N., Hyde, T.G., and Tait, J.T., Polymer, 1973, vol. 14, no. 5, p. 22 4.

    Google Scholar 

  24. Chesworth, A.G., Haszeldine, R.N., and Tait, P.J., J. Polym. Sci., Polym. Chem. Ed., 1974, vol. 12, p. 1703.

    Article  CAS  Google Scholar 

  25. Belov, G.P., Solovyova, T.I., and Smirnov, V.I., Acta Polym., 1990, vol. 41, no. 3, p. 178.

    Article  CAS  Google Scholar 

  26. FRG Patent 3007725, 1980.

  27. Sinn, H., Kaminsky, W., and Vollmer, H.J., Angew. Chem., Int. Ed. Engl., 1980, vol. 19, p. 390.

    Article  Google Scholar 

  28. Sinn, H. and Kaminsky, W., Adv. Organomet. Chem., 1980, vol. 18, p. 99.

    CAS  Google Scholar 

  29. Stockland, R.A., Jr., Foley, S.R., and Jordan, R.F., J. Am. Chem. Soc., 2003, vol. 125, p. 796.

    Article  CAS  Google Scholar 

  30. Endo, K. and Saitoh, M., Polym. J., 2000, vol. 32, no. 3, p. 300.

    Article  CAS  Google Scholar 

  31. Endo, K. and Saitoh, M., Macromol. Rapid Commun., 2002, vol. 23, no. 15, p. 913.

    Article  CAS  Google Scholar 

  32. Endo, K. and Saitoh, M., J. Polym. Sci., Part A: Polym. Chem., 2003, vol. 41, p. 248.

    Article  CAS  Google Scholar 

  33. Ponce-Ibarra, V.H., Benavides, R., Cadenas-Pliego, G., Palos-Pizarro, I., and Huerta, B.M., Polym. Degrad. Stab., 2006, vol. 91, p. 499.

    Article  CAS  Google Scholar 

  34. Endo, K., Nomaguchi, T., and Tsuchiya, Y., J. Polym. Sci., Part A: Polym. Chem.,2007, vol. 45, p. 3872.

    Article  CAS  Google Scholar 

  35. Tsuchiya, Y., Nomaguchi, T., and Endo, K., Polymer, 2008, vol. 49, p. 1180.

    Article  CAS  Google Scholar 

  36. Nomaguchi, T., Tsuchiya, Y., and Endo, K., J. Vinyl Add. Technol., 2009, vol. 15, p. 159.

    Article  CAS  Google Scholar 

  37. Tsuchiya, Y. and Endo, K., Polym. Degrad. Stab., 2011, vol. 96, p. 1321.

    Article  CAS  Google Scholar 

  38. Foley, S.R., Stockland, R.A., Jr., Shen, H., and Jordan, R.F., J. Am. Chem. Soc., 2003, vol. 125, p. 4350.

    Article  CAS  Google Scholar 

  39. Kovaleva, N.Yu., Gavrilov, Yu.A., and Novokshonova, L.A., Polimery, 1997, vol. 42, no. 10, p. 616.

    CAS  Google Scholar 

  40. Airapetyan, S.M., Cand. Sci. (Chem.) Dissertation, Moscow: Inst. of Chemical Physics, 1982.

    Google Scholar 

  41. LLauro-Darricades, M.F., Michel, A., Guyot, A., Waton, H., Retiaud, R., and Pham, Q.T., J. Macromol. Sci., Part A: Pure Appl. Chem., 1986, vol. 23, no. 2, p. 221.

    Article  Google Scholar 

  42. Starnes, W.H., Jr., Prog. Polym. Sci., 2002, vol. 27, p. 2133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kovaleva.

Additional information

Original Russian Text © N.Yu. Kovaleva, L.A. Novokshonova, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 4, pp. 475–483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, N.Y., Novokshonova, L.A. Homopolymerization and copolymerization of vinyl chloride over supported metalorganic catalysts. Kinet Catal 57, 474–481 (2016). https://doi.org/10.1134/S0023158416030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416030071

Keywords

Navigation