Skip to main content
Log in

The role of parameta isomerization in the selective synthesis of para-tert-butylphenol in the presence of modern macroporous sulfonic cation-exchange resins

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The formation of meta-tert-butylphenol (m-TBP), which decreasing the quality of the commercial product, is shown to be possible in the target synthesis of para-tert-butylphenol (p-TBP) in the presence of sulfonic cation-exchange resins using macroporous Amberlyst 36 Dry as an example. The equilibrium concentration of m-TBP in the liquid phase (the maximum value at 409 K is 47 wt %) is calculated from experimental and published data. Up to 10 wt % m-TBP (on the reaction mixture basis) is formed at the maximum values of temperature (409 K) and contact time (450 min). Kinetic characteristics are determined for the \(p - TBP + phenol\underset{{{k_{ - 6}}}}{\overset{{{k_6}}}{\longleftrightarrow}}m - TBP\) + phenol reaction, which supplements the kinetic model for the production of p-TBP. The rate constants of this reaction are several orders of magnitude smaller than those for the main (orthopara) transformations. The temperature range (353–383 K) and contact time at which the formation of m-TBP is minimum and exerts no effect on the qualitative characteristics of the target p-isomer are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muroi, T., Nojiri, N., and Deguchi, T., Appl. Catal. A, 2010, vol. 389, p. 27.

    Article  CAS  Google Scholar 

  2. Pil’shchikov, V.A., Cand. Sci. (Chem.) Dissertation, Kuibyshev: Kuibyshev Polytechnic Inst., 1981.

    Google Scholar 

  3. Bolton, A.P., Lanewala, M.A., and Pickert, P.E., J. Org. Chem., 1968, vol. 33, p. 3415.

    Article  CAS  Google Scholar 

  4. Norrel John, R., J. Org. Chem., 1973, vol. 38, p. 1929.

    Article  Google Scholar 

  5. US Patent 3014079, 1961.

  6. US Patent 3872173, 1975.

  7. Harmer Mark, A. and Sun, Q., Appl. Catal., A, 2001, vol. 221, p. 45.

    Article  Google Scholar 

  8. Rempel’, R.D., Cand. Sci. (Chem) Dissertation, Kuibyshev: Kuibyshev Polytechnic Inst., 1986.

    Google Scholar 

  9. Voronin, I.O., Nesterova, T.N., Strelchik, B.S., and Zhuravskii, E.A., Kinet. Catal., 2014, vol. 55, p. 705.

    Article  CAS  Google Scholar 

  10. Unni, P.N. and Bhatia, S., J. Chem. Technol. Biotechnol., 1982, vol. 33 A, p.1.

    Article  Google Scholar 

  11. Siril, P.F., Cross, H.E., and Brown, D.R., J. Mol. Catal. A: Chem., 2008, vol. 279, p. 63.

    Article  CAS  Google Scholar 

  12. US Patent 4774368, 1988.

  13. Pimerzin, A.A., Nesterova, T.N., Gulina, Yu.B., Zh. Anal. Khim., 1985, no. 4, p. 725.

    Google Scholar 

  14. Vol’-Epshtein, A.B. and Gagarin, S.G., Kataliticheskie prevrashcheniya alkilfenolov. (Catalytic Reactions of Alkylphenols), Moscow: Khimiya, 1973, pp. 45–60, 192–200.

    Google Scholar 

  15. Pilschikov, V.A., Nesterova, T.N., and Rozhnov, A.M., Zh. Prikl. Khim., 1981, no. 9, p. 2018.

    Google Scholar 

  16. Nesterova, T.N., Verevkin, S.P., Malova, T.N., and Pilschikov, V.A., Zh. Prikl. Khim., 1985, no. 4, p. 827.

    Google Scholar 

  17. Rajadhyaksha, R.A. and Chaudhary, D.D., Bull. Chem. Soc. Jpn., 1988, vol. 61, p. 1379.

    Article  CAS  Google Scholar 

  18. Pimerzin, A.A., Nesterova, T.N., Rozhnov, A.M., and Karlina, T.N., J. Chem. Thermodyn., 1989, vol. 21, p. 385.

    Article  Google Scholar 

  19. Verevkin, S.P., J. Chem. Thermodyn., 1999, vol. 31, p. 559.

    Article  CAS  Google Scholar 

  20. Verevkin, S.P., J. Chem. Thermodyn., 1999, vol. 31, p. 1397.

    Article  CAS  Google Scholar 

  21. Dapurkar, S.E. and Selvam, P., J. Catal., 2004, vol. 224, p. 178.

    Article  CAS  Google Scholar 

  22. Mathew, T., Rao, B.S., and Gopinath, C.S., J. Catal., 2004, vol. 222, p. 107.

    Article  CAS  Google Scholar 

  23. Sarish, S., Devassy Biju, M., Bohringer, W., Fletcher, J., and Halligudi, S.B., J. Mol. Catal. A: Chem., 2005, vol. 240, p. 123.

    CAS  Google Scholar 

  24. Wagholikar, S. and Mayadevi, S., Sivasankers, Appl. Catal., A, 2006, vol. 309, p. 106.

    Article  CAS  Google Scholar 

  25. Ma, Q., Chakraborty, D., Faglioni, F., Muller, R.P., Goddard, W.A. III, Harris, T., Campbell, C., and Tang, Y., J. Phys. Chem. A, 2006, vol. 110, p. 2246.

    Article  CAS  Google Scholar 

  26. Asraf A. Ali and Gaikar Vilas, G., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 6556–6566.

    Article  Google Scholar 

  27. Rohm and Haas Website, 2005. www.amberlyst.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Voronin.

Additional information

Original Russian Text © I.O. Voronin, T.N. Nesterova, N.V. Bilenchenko, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 2, pp. 237–244.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronin, I.O., Nesterova, T.N. & Bilenchenko, N.V. The role of parameta isomerization in the selective synthesis of para-tert-butylphenol in the presence of modern macroporous sulfonic cation-exchange resins. Kinet Catal 57, 243–250 (2016). https://doi.org/10.1134/S0023158416020178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416020178

Keywords

Navigation