Skip to main content
Log in

Kinetics and possible mechanism of hydrogen chloride oxidation over supported copper-containing salt catalysts: II. Kinetics of HCl oxidation in the deacon and methane oxychlorination reactions over the CuCl2-KCl-LaCl3 catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of HCl oxidation at 350–425°C over the supported CuCl2-KCl-LaCl3 catalyst has been investigated using a gradientless technique. The HCl oxidation kinetics in the Deacon and methane oxychlorination reactions has been studied in order to substantially extend the \(Cl_2 \left( {P_{Cl_2 } } \right)\) partial pressure variation range. When the reaction rate is independent of P HCl, HCl oxidation on the copper-potassium catalysts is described by the same rate equation, irrespective of whether the catalyst contains lanthanum or not. The introduction of lanthanum chloride increases the HCl oxidation rate by one order of magnitude. The rate equation obtained has significant advantages over the equation corresponding to the Kenney-Slama equation. The kinetic features of HCl oxidation over the lanthanum-containing catalyst, whether the process depends on P HCl or not, can be explained in terms of the superposition of the Kenney-Slama dissociative mechanism and the catalytic mechanism suggested here. The role of lanthanum chloride in both HCl oxidation pathways is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aglulin, A.G., Kinet. Catal. (in press).

  2. Rozanov, V.N., Gvozd, E.V., Treger, Yu.A., and Babich, N.F., Khim. Prom-st., 1983, no. 10, p. 584.

    Google Scholar 

  3. Shakhovtseva, G.A., Vasil’eva, I.B., Avetisov, A.K., and Gel’bshtein, A.I., Kinet. Katal., 1971, vol.12, no. 1, p. 244.

    CAS  Google Scholar 

  4. Ruthven, D.M. and Kenney, C.N., Chem. Eng. Sci., 1967, vol.22, p. 1561.

    Article  CAS  Google Scholar 

  5. Slama, I. and Pacak, J., Collect. Czech. Chem. Commun., 1971, vol.36, p. 402.

    Google Scholar 

  6. Ruthven, D.M. and Kenney, C.N., J. Inorg. Nucl. Chem., 1968, vol.30, p. 931.

    Article  CAS  Google Scholar 

  7. Little, J.A. and Kenney, C.N., J. Catal., 1985, vol.93, p. 23.

    Article  CAS  Google Scholar 

  8. Gel’bshtein, A.I. and Bakshi, Yu.M., Zh. Fiz. Khim., 1988, vol.62, no. 10, p. 2649.

    Google Scholar 

  9. Utorov, N.P., Bakshi, Yu.M., Bazov, V.P., and Gel’bshtein, A.I., Koord. Khim., 1985, vol.11, no. 5, p. 603.

    CAS  Google Scholar 

  10. Berg, A., Sorlie, M., and Oye, H.A., Z. Anorg. Allg. Chem., 1990, vol.583, no. 4, p. 145.

    Article  CAS  Google Scholar 

  11. Garcia, C.L. and Resasco, D., Appl. Catal., 1989, vol.46, p. 251.

    Article  CAS  Google Scholar 

  12. Novikov, G.I., Doctoral (Chem.) Dissertation, Leningrad, 1965.

    Google Scholar 

  13. Aglulin, A.G., Kinet. Katal., 1995, vol.36, no. 5, p. 702.

    Google Scholar 

  14. Kurlyandskaya, I.I., Kudryavtseva, T.F., Grinberg, S.B., Treger, Yu.A., and Dzhagatsianyan, R.V., in Tr. Vses. konf. po mekhanizmu geterogenno-kataliticheskikh reaktsii (Proc. USSR National Conf. on Mechanisms of Heterogeneous Catalytic Reactions), Moscow, 1974, suppl. 2, p. 6.

    Google Scholar 

  15. Arnold, C.W. and Kobe, K.A., Chem. Eng. Prog., 1952, vol.48, p. 293.

    CAS  Google Scholar 

  16. Allen, J.A. and Clark, A.J., J. Appl. Chem., 1966, vol.16, p. 1962; 1962, vol. 12, p. 406.

    Google Scholar 

  17. Volkov, S.V., Ionnye rasplavy (Ionic Melts), Kiev: Naukova Dumka, 1975, vol. 3, p. 65.

    Google Scholar 

  18. Volkov, S.V., Grishchenko, V.F., and Delimarskii, Yu.K., Koordinatsionnaya khimiya solevykh rasplavov (Coordination Chemistry of Salt Melts), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  19. Grinberg, A.A., Vvedenie v khimiyu kompleksnykh soedinenii (Introduction to Coordination Chemistry), Moscow: Khimiya, 1966, 3rd ed.

    Google Scholar 

  20. Nekrasov, V.N. and Ivanovskii, L.E., Rasplavy, 1987, vol. 1, no. 2, p. 82.

    CAS  Google Scholar 

  21. Smirnov, M.V., Komarov, V.E., and Nasonov, Yu.V., Tr. Inst. Elektrokhim. Ural. Nauchn. Tsentra Akad. Nauk SSSR, 1973, vol. 19, p. 9.

    Google Scholar 

  22. Lumpov, A.I., Mikheikin, I.D., Zhidomirov, G.M., and Kazanskii, V.B., Kinet. Katal., 1978, vol.19, no. 6, p. 1557.

    CAS  Google Scholar 

  23. Tarabanko, V.E., Tarabanko, N.V., and Koropachinskaya, N. V., Catal. Ind., 2010, no. 3, p. 259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aglulin.

Additional information

Original Russian Text © A.G. Aglulin, 2014, published in Kinetika i Kataliz, 2014, Vol. 55, No. 5, pp. 610–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aglulin, A.G. Kinetics and possible mechanism of hydrogen chloride oxidation over supported copper-containing salt catalysts: II. Kinetics of HCl oxidation in the deacon and methane oxychlorination reactions over the CuCl2-KCl-LaCl3 catalyst. Kinet Catal 55, 582–591 (2014). https://doi.org/10.1134/S0023158414050024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414050024

Keywords

Navigation