Skip to main content
Log in

Intramolecular Electronic Structural Rearrangements in Vanadium, Molybdenum, and Rhenium Oxo- and Thiometallates

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Reaction pathways are found for electronic structural rearrangements in thiometallates [MS4]n (M = V, n = 3; Mo, n = 2; Re, n = 1), which do not contradict the hypothesis about the possible electron transfer from sulfide ions S2– to metal centers with a corresponding decrease in metal atomic charges and the formation of disulfide ions of the (S2)2– type. The obtained results are compared with similar results for the same series of oxometallates [MO4]n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. M. M. Heravi and F. F. Bamoharram. Chapter 2 - Heteropoly Acids: An Overview. In: Advances in Green and Sustainable Chemistry: Heteropolyacids as Highly Efficient and Green Catalysts Applied in Organic Transformations / Eds. M.M. Heravi, F.F. Bamoharram. Elsevier, 2022, 61-140. https://doi.org/10.1016/B978-0-323-88441-9.00002-8

    Chapter  Google Scholar 

  2. F. Lefebvre. Chapter 11 - Polyoxometalates Encapsulated in Inorganic Materials: Applications in Catalysis. In: New and Future Developments in Catalysis / Ed. S. L. Suib. Amsterdam: Elsevier, 2013, 265-288. https://doi.org/10.1016/B978-0-444-53876-5.00011-8

    Chapter  Google Scholar 

  3. A. C. Ranade, A. Müller, and E. Diemann. Übergangsmetallchalkogenverbindungen. Evidence for the existence of new thioanions of vanadium and rhenium by their electronic spectra. Z. Anorg. Allg. Chem., 1970, 373(3), 258-264. https://doi.org/10.1002/zaac.19703730308

    Article  CAS  Google Scholar 

  4. T. P. Prasad and A. Müller. Thermal decompositions of (NH4)2WSe4 and (NH4)3VS4 under normal and reduced nitrogen pressures. J. Therm. Anal., 1976, 10(3), 369-373. https://doi.org/10.1007/BF01909888

    Article  CAS  Google Scholar 

  5. M. S. Whittingham, R. R. Chianelli, and A. J. Jacobson. Amorphous Cathodes for Lithium Batteries. In: Materials for Advanced Batteries / Eds. D. W. Murphy, J. Broadhead, and B. C. H. Steele. Boston, MA, USA: Springer, 1980, 291-299. https://doi.org/10.1007/978-1-4684-3851-2_23

    Chapter  Google Scholar 

  6. T. P. Prasad, E. Diemann, and A. Müller. Thermal decomposition of (NH4)2MoO2S2, (NH4)2MoS4, (NH4)2WO2S2 and (NH4)2WS4. J. Inorg. Nucl. Chem., 1973, 35(6), 1895-1904. https://doi.org/10.1016/0022-1902(73)80124-1

    Article  CAS  Google Scholar 

  7. E. Y. Oganesova, E. G. Bordubanova, A. S. Lyadov, and O. P. Parenago. Synthesis and tribological behavior of metal sulfide nanoparticles produced by thermosolvolysis of sulfur-containing precursors. Pet. Chem., 2019, 59(9), 1028-1036. https://doi.org/10.1134/S0965544119090160

    Article  CAS  Google Scholar 

  8. D. E. Schwarz, A. I. Frenkel, R. G. Nuzzo, T. B. Rauchfuss, and A. Vairavamurthy. Electrosynthesis of ReS4. XAS analysis of ReS2, Re2S7, and ReS4. Chem. Mater., 2004, 16, 151-158. https://doi.org/10.1021/cm034467v

    Article  CAS  Google Scholar 

  9. C.-H. Lee, S. Lee, G.-S. Kang, Y.-K. Lee, G. G. Park, D. C. Lee, and H.-I. Joh. Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal., B, 2019, 258, 117995. https://doi.org/10.1016/j.apcatb.2019.117995

    Article  CAS  Google Scholar 

  10. S. B. Artemkina, E. D. Grayfer, M. N. Ivanova, A. Y. Ledneva, A. A. Poltarak, P. A. Poltarak, S. S. Yarovoi, S. G. Kozlova, and V. E. Fedorov. Structural and chemical features of chalcogenides of early transition metals. J. Struct. Chem., 2022, 63(7), 1079-1100. https://doi.org/10.1134/S002247662207006X

    Article  CAS  Google Scholar 

  11. E. D. Grayfer, S. B. Artemkina, M. N. Ivanova, K. A. Brylev, and V. E. Fedorov. Low-dimensional group IV-VII transition metal polychalcogenides and chemical aspects of their applications. Russ. Chem. Rev., 2023, 92(3), 5072. https://doi.org/10.57634/RCR5072

  12. ADF 2020.102. Amsterdam, The Netherlands: SCM, Theoretical Chemistry, Vrije Universiteit, 2020, https://www.scm. com (accessed Jan 10, 2022).

  13. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with ADF. J. Comput. Chem., 2001, 22(9), 931-967. https://doi.org/10.1002/jcc.1056

    Article  CAS  Google Scholar 

  14. C. Lee, W. Yang, and R. G. Parr. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2), 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  15. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  16. S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 1980, 58(8), 1200-1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  17. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15), 154104. https://doi.org/10.1063/1.3382344

    Article  PubMed  Google Scholar 

  18. E. Van Lenthe and E. J. Baerends. Optimized slater-type basis sets for the elements 1-118. J. Comput. Chem., 2003, 24(9), 1142-1156. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  19. E. Van Lenthe. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys., 1999, 110(18), 8943-8953. https://doi.org/10.1063/1.478813

    Article  CAS  Google Scholar 

  20. G. Henkelman, B. P. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 2000, 113(22), 9901-9904. https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  21. R. Bader. Atoms in Molecules. A Quantum Theory. New York, USA: Oxford Univ., 1990.

  22. A. D. Becke and K. E. Edgecombe. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 1990, 9(9), 5397-5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  23. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von Schnering. Electron localization in solid-state structures of the elements: The diamond structure. Angew. Chem., Int. Ed. Engl., 1992, 31(2), 187/188. https://doi.org/10.1002/anie.199201871

    Article  Google Scholar 

  24. B. Silvi and A. Savin. Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 1994, 371(6499), 683-686. https://doi.org/10.1038/371683a0

    Article  CAS  Google Scholar 

  25. M. Kohout. DGrid, Version 4.6. Radebeul, Germany, 2011.

  26. F. M. Bickelhaupt and E. J. Baerends. Kohn–Sham Density Functional Theory: Predicting and Understanding Chemistry. In: Reviews in Computational Chemistry, Vol. 15 / Eds. K. B. Lipkowitz and D. B. Boyd. Wiley, 2000, 1-86. https://doi.org/10.1002/9780470125922.ch1

    Chapter  Google Scholar 

  27. M. Swart, E. Rösler, and F. M. Bickelhaupt. Proton affinities of maingroup-element hydrides and noble gases: Trends across the periodic table, structural effects, and DFT validation. J. Comput. Chem., 2006, 27(13), 1486-1493. https://doi.org/10.1002/jcc.20431

    Article  CAS  PubMed  Google Scholar 

  28. M. Swart and F. M. Bickelhaupt. Proton affinities of anionic bases: Trends across the periodic table, structural effects, and DFT validation. J. Chem. Theory Comput., 2006, 2(2), 281-287. https://doi.org/10.1021/ct0502460

    Article  CAS  Google Scholar 

  29. B. Krebs and K.-D. Hasse. Refinements of the crystal structures of KTcO4, KReO4 and OsO4. The bond lengths in tetrahedral oxoanions and oxides of d0 transition metals. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 1976, 32(5), 1334-1337. https://doi.org/10.1107/S056774087600530X

    Article  Google Scholar 

  30. B. C. Chakoumakos, M. M. Abraham, and L. A. Boatner. Crystal structure refinements of zircon-type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J. Solid State Chem., 1994, 109(1), 197-202. https://doi.org/10.1006/jssc.1994.1091

    Article  CAS  Google Scholar 

  31. A. J. Bridgeman and G. Cavigliasso. Density-functional investigation of bonding in tetrahedral MO4 anions. Polyhedron, 2001, 20(18), 2269-2277. https://doi.org/10.1016/S0277-5387(01)00772-0

    Article  CAS  Google Scholar 

  32. M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio. Vibrational and XRD study of the system CdWO4–CdMoO4. J. Phys. Chem. B, 1997, 101(22), 4358-4369. https://doi.org/10.1021/jp963008x

    Article  CAS  Google Scholar 

  33. E. Gürmen, E. Daniels, and J. S. King. Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J. Chem. Phys., 1971, 55(3), 1093-1097. https://doi.org/10.1063/1.1676191

    Article  Google Scholar 

  34. R. J. C. Brown, B. M. Powell, and S. N. Stuart. Thermal effects in the structure of potassium perrhenate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1993, 49(2), 214-216. https://doi.org/10.1107/s0108270192003706

    Article  Google Scholar 

  35. R. L. Redington, W. B. Olson, and P. C. Cross. Studies of hydrogen peroxide: The infrared spectrum and the internal rotation problem. J. Chem. Phys., 1962, 36(5), 1311-1326. https://doi.org/10.1063/1.1732733

    Article  CAS  Google Scholar 

  36. B.-M. Cheng, J. Eberhard, W.-C. Chen, and C. Yu. Ionization energy of HSSH. J. Chem. Phys., 1997, 107(13), 5273/5274. https://doi.org/10.1063/1.474891

    Article  CAS  Google Scholar 

  37. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys., 2002, 117(12), 5529-5542. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  38. P. Miró, S. Pierrefixe, M. Gicquel, A. Gil, and C. Bo. On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. J. Am. Chem. Soc., 2010, 132(50), 17787-17794. https://doi.org/10.1021/ja1053175

    Article  CAS  PubMed  Google Scholar 

  39. L. Pinto da Silva and J. C. G. Esteves da Silva. Dioxetanones′ peroxide bond as a charge-shifted bond: Implications in the chemiluminescence process. Struct. Chem., 2014, 25(4), 1075-1081. https://doi.org/10.1007/s11224-013-0383-1

    Article  CAS  Google Scholar 

  40. L. Deng, T. Ziegler, and L. Fan. A combined density functional and intrinsic reaction coordinate study on the ground state energy surface of H2CO. J. Chem. Phys., 1993, 99(5), 3823-3835. https://doi.org/10.1063/1.466129

    Article  CAS  Google Scholar 

  41. L. Deng and T. Ziegler. The determination of intrinsic reaction coordinates by density functional theory. Int. J. Quantum Chem., 1994, 52(4), 731-765. https://doi.org/10.1002/qua.560520406

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (projects Nos. 121031700321-3 and 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kozlova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114992.https://doi.org/10.26902/JSC_id114992

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemkina, S.B., Brylev, K.A., Ivanova, M.N. et al. Intramolecular Electronic Structural Rearrangements in Vanadium, Molybdenum, and Rhenium Oxo- and Thiometallates. J Struct Chem 64, 1532–1541 (2023). https://doi.org/10.1134/S0022476623080176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080176

Keywords

Navigation