Skip to main content
Log in

Synthesis, Structural, Spectroscopic, Hirshfeld Surface Analysis and Computational Study of Copper Complex Containing Salicylaldimine Ligands

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Herein, a new Schiff base copper complex named as of bis{(E)-5-(diethylamino)-2-(((3-iodo-4-methylphenyl)imino)methyl)phenol}copper(II) (DIMP-Cu) is synthesized by the reaction of (E)-5-(diethylamino)-2-(((3-iodo-4-methylphenyl)imino)methyl)phenol with copper(II)acetate monohydrate in ethanol. The complex is characterized by FTIR, UV-visible, 1H NMR and 13C NMR. Moreover, the crystal structure is determined by single crystal X-rays diffraction analysis (SC-XRD) which showed that the coordination geometry around Cu-atom is distorted square planar. The supramolecular assembly is mainly stabilized by C–H⋯I bonding. The non-covalent interactions are further inspected by Hirshfeld surface analysis. Mechanical response of the crystal is predicted by void analysis. Computational study is carried out by using HF/3-21G electron density model in order to find the interaction energy between molecular pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. H. Schiff. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Ann. Chem. Pharm., 1864, 131(1), 118/119. https://doi.org/10.1002/jlac.18641310113

    Article  Google Scholar 

  2. C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A. S. Darwish, T. Lemaoui, R. Verma, and Y. Benguerba. Schiff bases and their metal complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun., 2023, 150, 110451. https://doi.org/10.1016/j.inoche.2023.110451

    Article  CAS  Google Scholar 

  3. M. Ashfaq, M. Nawaz Tahir, K. S. Munawar, R. Behjatmanesh-Ardakani, and H. Kargar. Single crystal exploration, supramolecular behaviour, Hirshfeld surface analysis, linear and non-linear theoretical optical properties of Schiff bases derived from benzene sulfonamides. J. Mol. Struct., 2022, 1261, 132952. https://doi.org/10.1016/j.molstruc.2022.132952

    Article  CAS  Google Scholar 

  4. N. Yuldasheva, N. Acikyildiz, M. Akyuz, L. Yabo-Dambagi, T. Aydin, A. Cakir, and C. Kazaz. The synthesis of Schiff bases and new secondary amine derivatives of p-vanillin and evaluation of their neuroprotective, antidiabetic, antidepressant and antioxidant potentials. J. Mol. Struct., 2022, 1270, 133883. https://doi.org/10.1016/j.molstruc.2022.133883

    Article  CAS  Google Scholar 

  5. P. Pfeiffer, E. Breith, E. Lübbe, and T. Tsumaki. Tricyclische orthokondensierte Nebenvalenzringe. Justus Liebigs Ann. Chem., 1933, 503(1), 84-130. https://doi.org/10.1002/jlac.19335030106

    Article  CAS  Google Scholar 

  6. L. Hunter and J. A. Marriott. Co-ordinated copper and nickel compounds of salicylidene derivatives. J. Chem. Soc., 1937, 2000. https://doi.org/10.1039/jr9370002000

    Article  Google Scholar 

  7. N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan. Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Met. Chem., 2001, 26, 105-109. https://doi.org/10.1023/a:1007132408648

    Article  CAS  Google Scholar 

  8. H. Kargar, A. A. Ardakani, M. N. Tahir, M. Ashfaq, and K. S. Munawar. Synthesis, spectral characterization, crystal structure determination and antimicrobial activity of Ni(II), Cu(II) and Zn(II) complexes with the Schiff base ligand derived from 3,5-dibromosalicylaldehyde. J. Mol. Struct., 2021, 1229, 129842. https://doi.org/10.1016/j.molstruc.2020.129842

    Article  CAS  Google Scholar 

  9. S.-Z. Zhang, G. Guo, W.-M. Ding, J. Li, Y. Wu, H.-J. Zhang, J.-Q. Guo, and Y.-X. Sun. Synthesis and spectroscopic properties of two different structural Schiff base Zn(II) complexes constructed with/without auxiliary ligands. J. Mol. Struct., 2021, 1230, 129627. https://doi.org/10.1016/j.molstruc.2020.129627

    Article  CAS  Google Scholar 

  10. R. V. Sakthivel, P. Sankudevan, P. Vennila, G. Venkatesh, S. Kaya, and G. Serdaroğlu. Experimental and theoretical analysis of molecular structure, vibrational spectra and biological properties of the new Co(II), Ni(II) and Cu(II) Schiff base metal complexes. J. Mol. Struct., 2021, 1233, 130097. https://doi.org/10.1016/j.molstruc.2021.130097

    Article  CAS  Google Scholar 

  11. W.-K. Dong, J.-C. Ma, L.-C. Zhu, Y.-X. Sun, S. F. Akogun, and Y. Zhang. A series of heteromultinuclear zinc(II)–lanthanide(III) complexes based on 3-MeOsalamo: syntheses, structural characterizations, and luminescent properties. Cryst. Growth Des., 2016, 16(12), 6903-6914. https://doi.org/10.1021/acs.cgd.6b01067

    Article  CAS  Google Scholar 

  12. S. Wang, X. Yang, T. Zhu, L. Bo, R. Wang, S. Huang, C. Wang, D. Jiang, H. Chen, and R. A. Jones. Construction of luminescent high-nuclearity Zn–Ln rectangular nanoclusters with flexible long-chain Schiff base ligands. Dalton Trans., 2018, 47(1), 53-57. https://doi.org/10.1039/c7dt02576a

    Article  CAS  Google Scholar 

  13. S. Sagar, S. Sengupta, A. J. Mota, S. K. Chattopadhyay, A. Espinosa Ferao, E. Riviere, W. Lewis, and S. Naskar. Cubane-like tetranuclear Cu(II) complexes bearing a Cu4O4 core: crystal structure, magnetic properties, DFT calculations and phenoxazinone synthase like activity. Dalton Trans., 2017, 46(4), 1249-1259. https://doi.org/10.1039/c6dt03754b

    Article  CAS  PubMed  Google Scholar 

  14. X.-Q. Song, P.-P. Liu, Y.-A. Liu, J.-J. Zhou, and X.-L. Wang. Two dodecanuclear heterometallic [Zn6Ln6] clusters constructed by a multidentate salicylamide salen-like ligand: synthesis, structure, luminescence and magnetic properties. Dalton Trans., 2016, 45(19), 8154-8163. https://doi.org/10.1039/c6dt00212a

    Article  CAS  PubMed  Google Scholar 

  15. R. A. Ahmadi and S. Amani. Synthesis, spectroscopy, thermal analysis, magnetic properties and biological activity studies of Cu(II) and Co(II) complexes with Schiff base dye ligands. Molecules, 2012, 17(6), 6434-6448. https://doi.org/10.3390/molecules17066434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. Mahadevi, S. Sumathi, A. Metha, and J. Singh. Synthesis, spectral, antioxidant, in vitro cytotoxicity activity and thermal analysis of Schiff base metal complexes with 2,2′-bipyridine-4,4′-dicarboxylic acid as co-ligand. J. Mol. Struct., 2022, 1268, 133669. https://doi.org/10.1016/j.molstruc.2022.133669

    Article  CAS  Google Scholar 

  17. R. K. Al-Shemary, R. K. Mohapatra, M. Kumar, A. K. Sarangi, M. Azam, H. S. Tuli, A. Ansari, P. K. Mohapatra, and K. Dhama. Synthesis, structural investigations, XRD, DFT, anticancer and molecular docking study of a series of thiazole based Schiff base metal complexes. J. Mol. Struct., 2023, 1275, 134676. https://doi.org/10.1016/j.molstruc.2022.134676

    Article  CAS  Google Scholar 

  18. Zabiulla, S. Kouser, M. Joythi, A. Bushra Begum, M. S. Asha, F. Hezam Al-Ostoot, D. P. Lakshmeesha, R. Ramu, and S. Ara Khanum. Molecular docking, synthesis and antimicrobial evaluation of metal complexes with Schiff base. Results Chem., 2023, 5, 100650. https://doi.org/10.1016/j.rechem.2022.100650

    Article  CAS  Google Scholar 

  19. P. Devi, K. Singh, and B. Kubavat. Synthesis, spectroscopic, quantum, thermal and kinetics, antibacterial and antifungal studies: novel Schiff base 5-methyl-3-((5-bromosalicylidene) amino)-pyrazole and its transition metal complexes. Results Chem., 2023, 5, 100813. https://doi.org/10.1016/j.rechem.2023.100813

    Article  CAS  Google Scholar 

  20. S. Shi, S. Yu, L. Quan, M. Mansoor, Z. Chen, H. Hu, D. Liu, Y. Liang, and F. Liang. Synthesis and antitumor activities of transition metal complexes of a bis-Schiff base of 2-hydroxy-1-naphthalenecarboxaldehyde. J. Inorg. Biochem., 2020, 210, 111173. https://doi.org/10.1016/j.jinorgbio.2020.111173

    Article  CAS  PubMed  Google Scholar 

  21. I. Shaikh, M. Travadi, R. N. Jadeja, R. J. Butcher, and J. H. Pandya. Crystal feature and spectral characterization of Zn(II) complexes containing Schiff base of acylpyrazolone ligand with antimalarial action. J. Indian Chem. Soc., 2022, 99(5), 100428. https://doi.org/10.1016/j.jics.2022.100428

    Article  CAS  Google Scholar 

  22. H.-X. Feng, R.-M. Wang, Y.-F. He, Z.-Q. Lei, Y.-P. Wang, C.-G. Xia, and J.-S. Suo. Preparation and catalysis of porous silica supported metal Schiff-base complex. J. Mol. Catal. A: Chem., 2000, 159(1), 25-29. https://doi.org/10.1016/s1381-1169(00)00166-7

    Article  CAS  Google Scholar 

  23. K. Mahmood, W. Hashmi, H. Ismail, B. Mirza, B. Twamley, Z. Akhter, I. Rozas, and R. J. Baker. Synthesis, DNA binding and antibacterial activity of metal(II) complexes of a benzimidazole Schiff base. Polyhedron, 2019, 157, 326-334. https://doi.org/10.1016/j.poly.2018.10.020

    Article  CAS  Google Scholar 

  24. N. K. Chaudhary and P. Mishra. Bioactivity of some divalent M(II) complexes of penicillin based Schiff base ligand: Synthesis, spectroscopic characterization, and thermal study. J. Saudi Chem. Soc., 2018, 22(5), 601-613. https://doi.org/10.1016/j.jscs.2017.10.003

    Article  CAS  Google Scholar 

  25. S. Gopal Rao, M. B. Ismail, E. Deivanayagam, K. R. Srinivasalu, S. K. Belliraj, and C. Manohar. Synthesis, characterization and antimicrobial activities of copper, nickel, cobalt, chromium complexes derived from (Z)-4-fluoro-N-(2,7-dimethylhept-6-enylidene) benzenamine. J. Braz. Chem. Soc., 2016. https://doi.org/10.21577/0103-5053.20160224

    Article  Google Scholar 

  26. J. V. Folgado, W. Henke, R. Allmann, H. Stratemeier, D. Beltran-Porter, T. Rojo, and D. Reinen. Fluxionality in hexacoordinated copper(II) complexes with 2,2′:6′,2″-terpyridine (terpy) and related ligands: structural and spectroscopic investigations. Inorg. Chem., 1990, 29(11), 2035-2042. https://doi.org/10.1021/ic00336a002

    Article  CAS  Google Scholar 

  27. M. Shebl, A. A. Saleh, S. M. E. Khalil, M. Dawy, and A. A. M. Ali. Synthesis, spectral, magnetic, DFT calculations, antimicrobial studies and phenoxazinone synthase biomimetic catalytic activity of new binary and ternary Cu(II), Ni(II) and Co(II) complexes of a tridentate ONO hydrazone ligand. Inorg. Nano-Met. Chem., 2021, 51(2), 195-209. https://doi.org/10.1080/24701556.2020.1770794

    Article  CAS  Google Scholar 

  28. X. Guo, J. Wu, H. Han, Y. Xing, Y. Liu, K. Wei, M. Kang, X. Yang, M. Pei, and G. Zhang. A novel oxazole-based fluorescence sensor towards Ga3+ and PPi for sequential determination and application. J. Photochem. Photobiol., A, 2022, 433, 114202. https://doi.org/10.1016/j.jphotochem.2022.114202

    Article  CAS  Google Scholar 

  29. B. Sreenivasulu, M. Vetrichelvan, F. Zhao, S. Gao, and J. J. Vittal. Copper(II) complexes of Schiff-base and reduced Schiff-base ligands: influence of weakly coordinating sulfonate groups on the structure and oxidation of 3,5-DTBC. Eur. J. Inorg. Chem., 2005, 2005(22), 4635-4645. https://doi.org/10.1002/ejic.200500638

    Article  CAS  Google Scholar 

  30. L.-X. Chen, C.-G. Niu, Z.-M. Xie, Y.-Q. Long, and X.-R. Song. Fiber-optic sensor for iodine based on a covalently immobilized aminobenzanthrone Schiff base. Anal. Sci., 2006, 22(7), 977-981. https://doi.org/10.2116/analsci.22.977

    Article  CAS  PubMed  Google Scholar 

  31. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, M. Bahadori, M. Moghadam, M. Ashfaq, K. S. Munawar, and M. N. Tahir. Spectroscopic investigation, molecular structure, catalytic activity with computational studies of a novel Pd(II) complex incorporating unsymmetrical tetradentate Schiff base ligand. Inorg. Chem. Commun., 2022, 142, 109697. https://doi.org/10.1016/j.inoche.2022.109697

    Article  CAS  Google Scholar 

  32. H. Kargar, M. Ashfaq, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K. S. Munawar, and M. N. Tahir. Unsymmetrical Ni(II) Schiff base complex: Synthesis, spectral characterization, crystal structure analysis, Hirshfeld surface investigation, theoretical studies, and antibacterial activity. J. Mol. Struct., 2022, 1265, 133381. https://doi.org/10.1016/j.molstruc.2022.133381

    Article  CAS  Google Scholar 

  33. H. Kargar, M. Ashfaq, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K. S. Munawar, and M. N. Tahir. Synthesis, crystal structure, spectral characterization, theoretical and computational studies of Ni(II), Cu(II) and Zn(II) complexes incorporating Schiff base ligand derived from 4-(diethylamino)salicylaldehyde. Inorg. Chim. Acta, 2022, 536, 120878. https://doi.org/10.1016/j.ica.2022.120878

    Article  CAS  Google Scholar 

  34. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H. Amiri Rudbari, A. Adabi Ardakani, S. Sedighi-Khavidak, K.S. Munawar, M. Ashfaq, M.N. Tahir. Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II) Schiff base complexes. Polyhedron, 2022, 213, 115636. https://doi.org/10.1016/j.poly.2021.115636

    Article  CAS  Google Scholar 

  35. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, M. Bahadori, M. Moghadam, M. Ashfaq, K. S. Munawar, and M. N. Tahir. Pd(II) and Ni(II) complexes containing ONNO tetradentate Schiff base ligand: Synthesis, crystal structure, spectral characterization, theoretical studies, and use of PdL as an efficient homogeneous catalyst for Suzuki–Miyaura cross-coupling reaction. Polyhedron, 2022, 213, 115622. https://doi.org/10.1016/j.poly.2021.115622

    Article  CAS  Google Scholar 

  36. H. Vesek, C. Kazak, E. Ağar, and S. Gümüş. 5-Diethylamino-2-{(E)-[(3-iodophenyl)imino]methyl}phenol. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, 68(6), o1963. https://doi.org/10.1107/s1600536812022556

    Article  CAS  Google Scholar 

  37. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  38. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  39. L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr., 2012, 45(4), 849-854. https://doi.org/10.1107/s0021889812029111

    Article  CAS  Google Scholar 

  40. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  CAS  Google Scholar 

  41. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  42. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  43. Q. Wu, Q. Zi, and Y. Qiao. Copper(II) coordination complex constructed from halogenated tetradentate Schiff base ligand: synthesis, crystal structure, and Hirshfeld surface analysis. Crystallogr. Rep., 2019, 64(6), 905-909. https://doi.org/10.1134/s1063774519060166

    Article  CAS  Google Scholar 

  44. L. Seifikar Ghomi, M. Behzad, A. Tarahhomi, and A. Arab. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper(II) and nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine. J. Mol. Struct., 2017, 1150, 214-226. https://doi.org/10.1016/j.molstruc.2017.08.089

    Article  CAS  Google Scholar 

  45. H. Kargar, A. Adabi Ardakani, K. S. Munawar, M. Ashfaq, and M. N. Tahir. Nickel(II), copper(II) and zinc(II) complexes containing symmetrical tetradentate Schiff base ligand derived from 3,5-diiodosalicylaldehyde: Synthesis, characterization, crystal structure and antimicrobial activity. J. Iran. Chem. Soc., 2021, 18(9), 2493-2503. https://doi.org/10.1007/s13738-021-02207-x

    Article  CAS  Google Scholar 

  46. H. Kargar, M. Ashfaq, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K. S. Munawar, and M. N. Tahir. Synthesis, characterization, SC-XRD, HSA and DFT study of a novel copper(I) iodide complex with 2-(thiophen-2-yl)-4,5-dihydro-1H-imidazole ligand: An experimental and theoretical approach. J. Mol. Struct., 2022, 1253, 132264. https://doi.org/10.1016/j.molstruc.2021.132264

    Article  CAS  Google Scholar 

  47. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 2007, (37), 3814. https://doi.org/10.1039/b704980c

    Article  Google Scholar 

  48. C. Jelsch, K. Ejsmont, and L. Huder. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ, 2014, 1(2), 119-128. https://doi.org/10.1107/s2052252514003327

    Article  CAS  Google Scholar 

  49. M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 2011, 13(6), 1804-1813. https://doi.org/10.1039/c0ce00683a

    Article  CAS  Google Scholar 

  50. M. J. Turner, S. Grabowsky, D. Jayatilaka, and M. A. Spackman. Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett., 2014, 5(24), 4249-4255. https://doi.org/10.1021/jz502271c

    Article  CAS  PubMed  Google Scholar 

  51. P. G. Lacroix, F. Averseng, I. Malfant, and K. Nakatani. Synthesis, crystal structures, and molecular hyperpolarizabilities of a new Schiff base ligand, and its copper(II), nickel(II), and cobalt(II) metal complexes. Inorg. Chim. Acta, 2004, 357(13), 3825-3835. https://doi.org/10.1016/j.ica.2004.03.004

    Article  CAS  Google Scholar 

  52. V. T. Kasumov, I. Uçar, and A. Bulut. Synthesis, structural, spectroscopic and reactivity properties of a new N-2,3,4-trifluorophenyl-3,5-di-tert-butylsalicylaldimine ligand and its Cu(II) and Pd(II) complexes. J. Fluor. Chem., 2010, 131(1), 59-65. https://doi.org/10.1016/j.jfluchem.2009.10.005

    Article  CAS  Google Scholar 

  53. J. Burgess, J. Fawcett, V. Palma, and S. R. Gilani. Fluoro derivatives of bis(salicylideneaminato-N,O)copper(II) and -oxovanadium(IV). Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2001, 57(3), 277-280. https://doi.org/10.1107/s0108270100020059

    Article  CAS  PubMed  Google Scholar 

  54. S. Saha, C. R. Choudhury, G. Pilet, A. Frontera, and S. Mitra. Design of end-on cyanato bridged trinuclear Cu(II) Schiff base complex with salen type Schiff base ligand: synthesis, structural investigation and DFT study. J. Coord. Chem., 2017, 70(8), 1389-1405. https://doi.org/10.1080/00958972.2017.1287354

    Article  CAS  Google Scholar 

  55. H. Iranmanesh, M. Behzad, G. Bruno, H. A. Rudbari, H. Nazari, A. Mohammadi, and O. Taheri. Cobalt(III) Schiff base complexes derived from mesostilbenediamine: Synthesis, characterization, crystal structure, electrochemistry and antibacterial studies. Inorg. Chim. Acta, 2013, 395, 81-88. https://doi.org/10.1016/j.ica.2012.10.030

    Article  CAS  Google Scholar 

  56. C. E. Satheesh, P. Raghavendra Kumar, P. Sharma, K. Lingaraju, B. S. Palakshamurthy, and H. Raja Naika. Synthesis, characterisation and antimicrobial activity of new palladium and nickel complexes containing Schiff bases. Inorg. Chim. Acta, 2016, 442, 1-9. https://doi.org/10.1016/j.ica.2015.11.017

    Article  CAS  Google Scholar 

  57. H. Naeimi and M. Moradian. Synthesis and characterization of nitro-Schiff bases derived from 5-nitro-salicylaldehyde and various diamines and their complexes of Co(II). J. Coord. Chem., 2010, 63(1), 156-162. https://doi.org/10.1080/00958970903225866

    Article  CAS  Google Scholar 

  58. R. M. Silverstein and G. C. Bassler. Spectrometric identification of organic compounds. J. Chem. Educ., 1962, 39(11), 546. https://doi.org/10.1021/ed039p546

    Article  CAS  Google Scholar 

  59. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4(5), 575-587. https://doi.org/10.1107/s205225251700848x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashfaq.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 113301.https://doi.org/10.26902/JSC_id113301

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaman, E., Ağar, A.A., Tahir, M.N. et al. Synthesis, Structural, Spectroscopic, Hirshfeld Surface Analysis and Computational Study of Copper Complex Containing Salicylaldimine Ligands. J Struct Chem 64, 1314–1328 (2023). https://doi.org/10.1134/S0022476623070156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070156

Keywords

Navigation