Skip to main content
Log in

Structural, Spectroscopic and Molecular Characterization of an Asymmetric Schiff Base Compound

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

2-((E)-((2-(((E)-2-hydroxy-3-methylbenzylidene)amino)benzyl)imino)methyl)-6-methylphenol, C23H22N2O2, was synthesized by the reaction between 2-hydroxy-3-methylbenzaldehyde, and 2-(aminomethyl)aniline in aqueous ethanol. X-ray diffraction analysis technique was used to reveal the structure. The crystal structure is monoclinic, space group P21/c with parameters a = 4.6035(11) Å, b = 18.895(3) Å, c = 21.748(6) Å, β = 100.23(4)°, V = 1794(16) Å3, Z = 4. It was determined by the Hirshfeld surface study that intermolecular hydrogen bonds stabilized the complex structure. Structure verified by Fourier transform infrared spectra technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. H. Schiff. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Ann. Chem. Pharm., 1864, 131(1), 118/119. https://doi.org/10.1002/jlac.18641310113

    Article  Google Scholar 

  2. N. Dege, A. S. Aydın, E. Ağar, S. Kansız, S. JoseKavitha, K. BalaSubramani, M. Hemamalini, and V. Rajakannan. Synthesis, crystal structure, Hirshfeld surface analysis, in-silico assessment of druggability and molecular docking studies of Schiff base compound. Chem. Data Collect., 2020, 25, 100320. https://doi.org/10.1016/j.cdc.2019.100320

    Article  CAS  Google Scholar 

  3. A. Jarrahpour, D. Khalili, E. De Clercq, C. Salmi, and J. Brunel. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730. https://doi.org/10.3390/12081720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. M. da Silva, D. L. da Silva, L. V. Modolo, R. B. Alves, M. A. de Resende, C. V. B. Martins, and Â. de Fátima. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8. https://doi.org/10.1016/j.jare.2010.05.004

    Article  Google Scholar 

  5. M. A. Ashraf, K. Mahmood, A. Wajid, M. J. Maah, and I. Yusoff. Synthesis, characterization and biological activity of Schiff bases. Int. Proc. Chem., Biol. Environ. Eng., 2011, 10(1), 185.

  6. P. G. Cozzi. Metal–salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev., 2004, 33(7), 410-421. https://doi.org/10.1039/b307853c

    Article  CAS  PubMed  Google Scholar 

  7. H. Ashassi-Sorkhabi, B. Shabani, B. Aligholipour, and D. Seifzadeh. The effect of some Schiff bases on the corrosion of aluminum in hydrochloric acid solution. Appl. Surf. Sci., 2006, 252(12), 4039-4047. https://doi.org/10.1016/j.apsusc.2005.02.148

    Article  CAS  Google Scholar 

  8. Z. Quan, S. Chen, and S. Li. Protection of copper corrosion by modification of self-assembled films of Schiff bases with alkanethiol. Corros. Sci., 2001, 43(6), 1071-1080. https://doi.org/10.1016/s0010-938x(00)00131-1

    Article  CAS  Google Scholar 

  9. X-RED and X-AREA. Darmstadt, Germany: Stoe & Cie, 2009.

  10. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  11. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  12. M. Turner, J. McKinnon, S. Wolff, D. Grimwood, P. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17, Version 5. Perth, Australia: University of Western Australia, 2017.

  13. R. Dennington II, T. Keith, and J. Millam. GaussView, Version 5. Shawnee Mission, KS, USA: Semichem Inc., 2009.

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.02. Wallingford, CT, USA: Gaussian, Inc., 2009.

  15. P. L. Fast, J. Corchado, M. L. Sanchez, and D. G. Truhlar. Optimized parameters for scaling correlation energy. J. Phys. Chem. A, 1999, 103(17), 3139-3143. https://doi.org/10.1021/jp9900382

    Article  CAS  Google Scholar 

  16. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  17. C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2), 785-789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  18. K. U. Ambili, S. S. Sreejith, J. M. Jacob, M. Sithambaresan, and M. R. P. Kurup. 2-Ethoxy-6-({2-[(3-ethoxy-2-hydroxybenzylidene)amino]benzyl}iminomethyl)phenol. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, 68(8), o2482. https://doi.org/10.1107/s1600536812031479

    Article  CAS  Google Scholar 

  19. D. K. Dey, S. P. Dey, A. Elmali, and Y. Elerman. Molecular structure and conformation of N-2-[3′-(methoxysalicylideneimino)benzyl]-3″-methoxysalicylideneimine. J. Mol. Struct., 2001, 562(1-3), 177-184. https://doi.org/10.1016/s0022-2860(00)00970-4

    Article  CAS  Google Scholar 

  20. S. L. Bernstein, N. F. Dupuis, N. D. Lazo, T. Wyttenbach, M. M. Condron, G. Bitan, D. B. Teplow, J.-E. Shea, B. T. Ruotolo, C. V. Robinson, and M. T. Bowers. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer′s disease. Nat. Chem., 2009, 1(4), 326-331. https://doi.org/10.1038/nchem.247

    Article  CAS  Google Scholar 

  21. A. Teimouri, A. N. Chermahini, K. Taban, and H. A. Dabbagh. Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes. Spectrochim. Acta, Part A, 2009, 72(2), 369-377. https://doi.org/10.1016/j.saa.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  22. H. A. Dabbagh, A. Teimouri, A. Najafi Chermahini, and M. Shahraki. DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2,4-dihydroxy benzoic acids. Spectrochim. Acta, Part A, 2008, 69(2), 449-459. https://doi.org/10.1016/j.saa.2007.04.024

    Article  CAS  PubMed  Google Scholar 

  23. A. Teimouri, M. Emami, A. N. Chermahini, and H. A. Dabbagh. Spectroscopic, quantum chemical DFT/HF study and synthesis of [2.2.1] hept-2′-en-2′-amino-N-azatricyclo [3.2.1.02,4] octane. Spectrochim. Acta, Part A, 2009, 71(5), 1749-1755. https://doi.org/10.1016/j.saa.2008.06.043

    Article  CAS  PubMed  Google Scholar 

  24. G. Socrates. Infrared and Raman Characteristic Group Frequencies. Blackwell, New Jersey, USA: Wiley, 2004.

  25. R. Lu, W. Gan, B. Wu, Z. Zhang, Y. Guo, and H. Wang. C–H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n = 1–8) interfaces. J. Phys. Chem. B, 2005, 109(29), 14118-14129. https://doi.org/10.1021/jp051565q

    Article  CAS  PubMed  Google Scholar 

  26. H. Saraçoğlu and A. Cukurovali. Crystal structure, spectroscopic investigations, and density functional studies of (Z)-2-(1H-imidazol-1-yl)-1-(3-methyl-3-mesitylcyclobutyl)ethanone oxime. Mol. Cryst. Liq. Cryst., 2016, 625(1), 173-185. https://doi.org/10.1080/15421406.2015.1069443

    Article  CAS  Google Scholar 

  27. H. Saraçoğlu and A. Cukurovali. An experimental and theoretical approach to the molecular structure of 3-{[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazono}-1,3-dihydro-indol-2-one. Int. J. Quantum Chem., 2012, 112(6), 1566-1578. https://doi.org/10.1002/qua.23136

    Article  CAS  Google Scholar 

  28. D. Lin-Vein, N. B. Colthup, W. G. Fateley, and J. G. Grasselli. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. New York, USA: Academic, 1991.

  29. I. H. Joe, G. Aruldhas, S. Anbukumar, and P. Ramasamy. Vibrational spectra and phase transition in triglycine sulpho-phosphate. Cryst. Res. Technol., 1994, 29(5), 685-692. https://doi.org/10.1002/crat.2170290520

    Article  CAS  Google Scholar 

  30. H. Saraçoğlu and Ö. Ekici. Spectroscopic characterization, X-ray structure and DFT studies on 4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-N-methylthiazol-2-amine. J. Struct. Chem., 2015, 56(7), 1342-1352. https://doi.org/10.1134/s002247661507015x

    Article  Google Scholar 

  31. K. Furić, V. Mohaček, M. Bonifačić, and I. Štefanić. Raman spectroscopic study of H2O and D2O water solutions of glycine. J. Mol. Struct., 1992, 267, 39-44. https://doi.org/10.1016/0022-2860(92)87006-h

    Article  Google Scholar 

  32. G. Lan, H. Wang, and J. Zheng. Raman spectra of diglycine selenate crystals. Spectrochim. Acta, Part A, 1990, 46(8), 1211-1216. https://doi.org/10.1016/0584-8539(90)80197-7

    Article  Google Scholar 

  33. H. Ünver, C. T. Zeyrek, B. Boyacioglu, M. Yıldız, N. Demir, and A. Elmali. Synthesis, crystal structure, anion sensing applications and DFT studies of (E)-2-[(3,5-bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol. J. Chem. Crystallogr., 2019, 49(4), 232-244. https://doi.org/10.1007/s10870-018-0758-7

    Article  CAS  Google Scholar 

  34. F. Güntepe, H. Saraçoğlu, N. Çalıskan, Ç. Yüksektepe, and A. Çukurovalı. Structure and DFT calculations of 2-{[3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenol. J. Struct. Chem., 2011, 52(3), 596-601. https://doi.org/10.1134/s002247661103022x

    Article  Google Scholar 

  35. A. J. Barnes, M. A. Majid, M. A. Stuckey, P. Gregory, and C. V. Stead. The resonance Raman spectra of Orange II and Para Red: molecular structure and vibrational assignment. Spectrochim. Acta, Part A, 1985, 41(4), 629-635. https://doi.org/10.1016/0584-8539(85)80050-7

    Article  Google Scholar 

  36. D. Sathiyanarayanan. Vibrational Spectroscopy Theory and Application. New Delhi, India: New Age International, 2004.

  37. J. George, J. C. Prasana, S. Muthu, T. K. Kuruvilla, S. Sevanthi, and R. S. Saji. Spectroscopic (FTIR, FT Raman) and quantum mechanical study on N-(2,6-dimethylphenyl)-2-{4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]piperazin-1-yl}acetamide. J. Mol. Struct., 2018, 1171, 268-278. https://doi.org/10.1016/j.molstruc.2018.05.106

    Article  CAS  Google Scholar 

  38. A. Karmakar and B. Singh. Spectroscopic and theoretical studies of charge-transfer interaction of 1-(2-pyridylazo)-2-napthol with nitroaromatics. Spectrochim. Acta, Part A, 2017, 179, 110-119. https://doi.org/10.1016/j.saa.2017.01.047

    Article  CAS  PubMed  Google Scholar 

  39. N. Issaoui, H. Ghalla, S. A. Brandán, F. Bardak, H. T. Flakus, A. Atac, and B. Oujia. Experimental FTIR and FT-Raman and theoretical studies on the molecular structures of monomer and dimer of 3-thiopheneacrylic acid. J. Mol. Struct., 2017, 1135, 209-221. https://doi.org/10.1016/j.molstruc.2017.01.074

    Article  CAS  Google Scholar 

  40. P. Manjusha, J. C. Prasana, S. Muthu, and B. Raajaraman. Density functional studies and spectroscopic analysis (FT-IR, FT-Raman, UV-visible, and NMR) with molecular docking approach on an antifibrotic drug pirfenidone. J. Mol. Struct., 2020, 1203, 127394. https://doi.org/10.1016/j.molstruc.2019.127394

    Article  CAS  Google Scholar 

  41. D. M. Gil. Synthesis, molecular structure, spectroscopic and theoretical investigation of 5-chlorosalicylaldehyde-2,4-dinitrophenylhydrazone. J. Mol. Struct., 2020, 1205, 127589. https://doi.org/10.1016/j.molstruc.2019.127589

    Article  CAS  Google Scholar 

  42. N. Boukabcha, A. Direm, M. Drissi, Y. Megrouss, N. Khelloul, N. Dege, M. Tuna, and A. Chouaih. Synthesis, structural determination, Hirshfeld surface analysis, 3D energy frameworks, electronic and (static, dynamic) NLO properties of o-Nitroacetanilide (o-NAA): A combined experimental and quantum chemical study. Inorg. Chem. Commun., 2021, 133, 108884. https://doi.org/10.1016/j.inoche.2021.108884

    Article  CAS  Google Scholar 

  43. D. A. Kleinman. Nonlinear dielectric polarization in optical media. Phys. Rev., 1962, 126(6), 1977-1979. https://doi.org/10.1103/physrev.126.1977

    Article  CAS  Google Scholar 

  44. A. D. Buckingham. Basic Theory of Intermolecular Forces: Applications to Small Molecules. In: Intermolecular Interactions: From Diatomics to Biopolymers / Ed. B. Pullman. New York, USA: Wiley, 1978, Vol. 1, 1.

  45. H. Saraçoğlu and A. Cukurovali. Quantum chemical, spectroscopic and X-ray diffraction studies of 5-methoxy-2-({4-[3-methyl-3-mesityl-cyclobutyl]-thiazol-2-yl}-hydrazonomethyl)-phenol. J. Mol. Struct., 2013, 1048, 382-391. https://doi.org/10.1016/j.molstruc.2013.06.009

    Article  CAS  Google Scholar 

  46. Y.-X. Sun, Q.-L. Hao, W.-X. Wei, Z.-X. Yu, L.-D. Lu, X. Wang, and Y.-S. Wang. Experimental and density functional studies on 4-(2,3-dichlorobenzylideneamino)antipyrine and 4-(2,5-dichlorobenzylideneamino)antipyrine. J. Mol. Struct., 2009, 929(1-3), 10-21. https://doi.org/10.1016/j.molstruc.2009.03.035

    Article  CAS  Google Scholar 

  47. R. Zhang, B. Du, G. Sun, and Y. Sun. Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochim. Acta, Part A, 2010, 75(3), 1115-1124. https://doi.org/10.1016/j.saa.2009.12.067

    Article  CAS  PubMed  Google Scholar 

  48. Y.-X. Sun, Q.-L. Hao, Z.-X. Yu, W.-X. Wei, L.-D. Lu, and X. Wang. Experimental and density functional studies on 4-(4-cyanobenzylideneamino)antipyrine. Mol. Phys., 2009, 107(3), 223-235. https://doi.org/10.1080/00268970902769471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dege.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 6, 112737.https://doi.org/10.26902/JSC_id112737

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, O.E., Poyraz, E.B., Saraçoğlu, H. et al. Structural, Spectroscopic and Molecular Characterization of an Asymmetric Schiff Base Compound. J Struct Chem 64, 1147–1163 (2023). https://doi.org/10.1134/S0022476623060161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623060161

Keywords

Navigation