Skip to main content
Log in

Two Novel Two-Dimensional Lanthanide (III) Coordination Polymers Constructed from Isonicotinic Acid and Iminodiacetic Acid: Synthesis, Structure, and Luminescence Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two novel two-dimensional Ln coordination polymers (CPs) [Ln33-OH)(IN)3(HIDA) (IDA)2]n (Ln = Eu, 1; Sm, 2; HIN = isonicotinic acid, and H2IDA = iminodiacetic acid) have been successfully synthesized under solvothermal conditions and characterized by IR, TG, and elemental analyses. The structures of 1 and 2 were determined by single-crystal X-ray structural analysis, which shows that LnIII ions interconnect through HIN and H2IDA molecules to generate a 1D chain, and the adjacent chains are joined together by the same form to form the 2D zonary plane of 1 and 2. Meanwhile, We also studied luminescence properties of 1 and 2. The luminescence lifetime and quantum yield of 1 are 1.32 ms and 25.30%, which are significantly longer and higher than the values obtained for reported Eu3+ coordination polymers in the solid state at room temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Liu, B. Y. Li, Y. Li, X. Li, F. Yang, G. Zing, Y. Peng, Z. J. Zhang, G. H. Li, Z. Shi, S. H. Feng, and D. T. Song (2014). Chem. Commun. 50, 5031.

    Article  CAS  Google Scholar 

  2. Y. Liu, S. F. Wu, G. Wang, G. P. Yu, J. G. Guan, C. Y. Pan, and Z. G. Wang (2014). J. Mater. Chem. A. 2, 7795.

    Article  CAS  Google Scholar 

  3. H. M. Yin, J. Q. Wang, Z. Xie, J. H. Yang, J. Bai, J. M. Lu, Y. Zhang, D. H. Yin, and J. Y. S. Lin (2014). Chem. Commun. 50, 3699.

    Article  CAS  Google Scholar 

  4. O. Kozachuk, I. Luz, F. X. L. Xamena, H. Noei, M. Kauer, H. B. Albada, E. D. Bloch, B. Marler, Y. M. Wang, M. Muhler, and R. A. Fischer (2014). Angew. Chem. Int. Ed. 53, 1.

    Article  Google Scholar 

  5. K. Manna, T. Zhang, and W. B. Lin (2014). J. Am. Chem. Soc. 136, 6566.

    Article  CAS  Google Scholar 

  6. M. Yoon, R. Srirambalaji, and K. Kim (2011). Chem. Rev. 112, 1196.

    Article  Google Scholar 

  7. Z. Q. Xu, W. Meng, H. J. Li, H. W. Hou, and Y. T. Fan (2014). Inorg. Chem. 53, 3260.

    Article  CAS  Google Scholar 

  8. P. Dechambenoit and J. R. Long (2011). Chem. Soc. Rev. 40, 3249.

    Article  CAS  Google Scholar 

  9. S. Rojas, E. Quartapelle Procopio, F. J. Carmona, M. A. Romero, J. A. R. Navarro, and E. Barea (2014). J. Mater. Chem. B. 2, 2473.

    Article  CAS  Google Scholar 

  10. D. X. Ma, B. Y. Li, X. J. Zhou, Q. Zhou, K. Liu, G. Zeng, G. H. Li, Z. Shi, and S. H. Feng (2013). Chem. Commun. 49, 8964.

    Article  CAS  Google Scholar 

  11. M. Zhang, G. Feng, Z. G. Song, Y. P. Zhou, H. Y. Chao, D. Q. Yuan, T. T. Y. Tan, Z. G. Guo, Z. G. Hu, B. Z. Tang, B. Liu, and D. Zhao (2014). J. Am. Chem. Soc. 136, 7241.

    Article  CAS  Google Scholar 

  12. M. Li, D. Li, M. O’Keeffe, and O. M. Yaghi (2014). Chem. Rev. 114, 1343.

    Article  CAS  Google Scholar 

  13. S. L. James (2003). Chem. Soc. Rev. 32, 276.

    Article  CAS  Google Scholar 

  14. D. Sarma, M. Prabu, S. Biju, M. L. P. Reddy, and S. Natarajan (2010). Eur. J. Inorg. Chem. 24, 3813.

    Article  Google Scholar 

  15. J. Rocha, L. D. Carlos, F. A. A. Paz, and D. Ananias (2011). Chem. Soc. Rev. 40, 926.

    Article  CAS  Google Scholar 

  16. L. D. Carlos, R. A. S. Ferreira, V. D. Bermudez, and S. J. L. Ribeiro (2009). Adv. Mater. 21, 509.

    Article  CAS  Google Scholar 

  17. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev. 38, 1330.

    Article  CAS  Google Scholar 

  18. S. Liu, Z. Xiang, Z. Hu, X. Zheng, and D. Cao (2011). J. Mater. Chem. 21, 66493.

    Google Scholar 

  19. Y. Q. Xiao, Y. J. Cui, Q. Zheng, S. C. Xiang, G. D. Qian, and B. L. Chen (2010). Chem. Commun. 46, 5503.

    Article  CAS  Google Scholar 

  20. H. B. Zhang, L. J. Zhou, J. Wei, Z. H. Li, P. Lin, and S. W. Du (2012). J. Mater. Chem. 22, 21210.

    Article  CAS  Google Scholar 

  21. H. H. Li, W. Shi, N. Xu, Z. J. Zhang, Z. Niu, T. Han, and P. Cheng (2012). Cryst. Growth Des. 12, 2602.

    Article  CAS  Google Scholar 

  22. H. Wang, S. J. Liu, D. Tian, J. M. Jia, and T. L. Hu (2012). Cryst. Growth Des. 12, 3263.

    Article  CAS  Google Scholar 

  23. J. M. Zhou, W. Shi, N. Xu, and P. Cheng (2013). Inorg. Chem. 52, 8082.

    Article  CAS  Google Scholar 

  24. B. Zhao, X. Y. Chen, Z. Chen, W. Shi, P. Cheng, S. P. Yan, and D. Z. Liao (2009). Chem. Commun. 21, 3113.

    Article  Google Scholar 

  25. M. L. P. Reddy and S. Sivakumar (2013). Dalton Trans. 42, 2663.

    Article  CAS  Google Scholar 

  26. A. R. Ramya, D. Sharma, S. Natarajan, and M. L. P. Reddy (2012). Inorg. Chem. 51, 8818.

    Article  CAS  Google Scholar 

  27. X. J. Gu and D. F. Xue (2007). Inorg. Chem. 46, 5349.

    Article  CAS  Google Scholar 

  28. J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, and Z. Zheng (2012). J. Am. Chem. Soc. 134, 3314.

    Article  CAS  Google Scholar 

  29. J. W. Zhao, H. L. Li, Y. Z. Li, C. Y. Li, Z. L. Wang, and L. J. Chen (2014). Cryst. Growth Des. 14, 5495.

    Article  CAS  Google Scholar 

  30. R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker, and R. E. P. Winpenny (2000). J. Chem. Soc. Dalton Trans. 14, 2349.

    Article  Google Scholar 

  31. L. J. Chen, F. Zhang, X. Ma, J. Luo, and J. W. Zhao (2015). Dalton Trans. 44, 12598.

    Article  CAS  Google Scholar 

  32. F. S. Richardson (1982). Chem. Rev. 82, 541.

    Article  CAS  Google Scholar 

  33. S. J. A. Pope, B. J. Coe, S. Faulkner, E. V. Bichenkova, X. Yu, and K. T. Douglas (2004). J. Am. Chem. Soc. 126, 9490.

    Article  CAS  Google Scholar 

  34. J. C. G. Buünzli and C. Piguet (2005). Chem. Soc. Rev. 34, 1048.

    Article  Google Scholar 

  35. G. J. Sopasis, M. Orfanoudaki, P. Zarmpas, A. Philippidis, M. Siczek, T. Lis, J. R. O’Brien, and C. J. Milios (2012). Inorg. Chem. 51, 1170.

    Article  CAS  Google Scholar 

  36. G. R. Choppin and D. R. Peterman (1998). Coord. Chem. Rev. 174, 283.

    Article  CAS  Google Scholar 

  37. P. T. Ma, R. Wan, Y. N. Si, F. Hu, Y. Y. Wang, J. Y. Niu, and J. P. Wang (2015). Dalton Trans. 44, 11514.

    Article  CAS  Google Scholar 

  38. X. F. Li, Y. B. Huang, and R. Cao (2012). Dalton Trans. 41, 6195.

    Article  CAS  Google Scholar 

  39. X. Ma, X. Li, Y. E. Cha, and L. P. Jin (2012). Cryst. Growth Des. 12, 5227.

    Article  CAS  Google Scholar 

  40. D. T. Lill, A. Bettencourt-Dias, and C. L. Cahill (2007). Inorg. Chem. 46, 3960.

    Article  Google Scholar 

  41. W. S. Lo, J. H. Zhang, W. T. Wong, and G. L. Law (2015). Inorg. Chem. 54, 3725.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, CJ., Wang, H. et al. Two Novel Two-Dimensional Lanthanide (III) Coordination Polymers Constructed from Isonicotinic Acid and Iminodiacetic Acid: Synthesis, Structure, and Luminescence Properties. J Clust Sci 28, 2005–2015 (2017). https://doi.org/10.1007/s10876-017-1194-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1194-0

Keywords

Navigation