Skip to main content

Advertisement

Log in

SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this review, Photoswitch@MOF materials, i.e. supramolecular compounds (hereinafter adducts) prepared by direct incorporation of organic photochromes into the cavities of metal-organic frameworks (MOFs) are considered. The available works devoted to photo-switchable MOFs do not report detailed studies of such compounds. The present review begins by briefly surveying the history of organic photochromic compounds, considering photochrome classes preserving their properties in the solid state, and describing the approaches to improve the performance of such compounds by supramolecular chemistry methods. Then we discuss all classes of organic photochromes for which Photoswitch@MOF adducts have been prepared. Particular attention is paid to the quantitative measurement of spectral and photokinetic parameters and photostability of adducts and of original MOFs. In terms of practical applications, most promising are the adducts of organic photochromes with surface MOF films referred to as Photoswitch@SURMOF compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Scheme 5
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 6
Scheme 7
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

REFERENCES

  1. J. Fritzsche. C. R. Seances Acad. Sci., Vie Acad., 1867, 64, 1035. https://fr.wikisource.org/w/index.php?title=Page:Comptes_rendus_hebdomadaires_des_s%C3%A9ances_de_l%E2%80%99Acad%C3%A9mie_des_sciences,_tome_064,_1867.djvu/1044&action=edit&redlink=1

  2. E. ter Meer. Ann. Chem., 1876, 181, 1. https://doi.org/10.1002/jlac.18761810102

    Article  Google Scholar 

  3. W. Marcwald. Z. Phys. Chem., 1899, 30, 140. https://doi.org/10.1515/zpch-1899-3007

    Article  Google Scholar 

  4. Y. Hirshberg. C. R. Seances Acad. Sci., Vie Acad., 1950, 231, 903. https://gallica.bnf.fr/ark:/12148/bpt6k3183z/f903.image.r=Hirshberg?rk=21459;2

  5. Main Photochromic Families: Organic Photochromic and Thermochromic Compounds, Vol. 1 / Eds. J. C. Crano and R. J. Guglielmetti. New York, London: Plenum, 1999.

  6. M. V. Alfimov, O. A. Fedorova, and S. P. Gromov. J. Photochem. Photobiol. A: Chem., 2003, 158, 183. https://doi.org/10.1016/S1010-6030(03)00033-9

    Article  CAS  Google Scholar 

  7. V. I. Minkin. Russ. Chem. Rev., 2013, 82, 1. https://doi.org/10.1070/rc2013v082n01abeh004336

    Article  Google Scholar 

  8. Molecular Switches / Eds. B. L. Feringa and W. R. Browne. Wiley, 2011. https://doi.org/10.1002/9783527634408

    Book  Google Scholar 

  9. A. Goulet-Hanssens, F. Eisenreich, and S. Hecht. Adv. Mater., 2020, 32, 1905966. https://doi.org/10.1002/adma.201905966

    Article  CAS  Google Scholar 

  10. G. A. Leith, C. R. Martin, A. Mathur, P. Kittikhunnatham, K. C. Park, and N. B. Shustova. Adv. Energy Mater., 2021, 2100441. https://doi.org/10.1002/aenm.202100441

    Article  CAS  Google Scholar 

  11. Y. Badour, V. Jubera, I. Adron, Ch. Frayret, and M. Gaudon. Opt. Mater.: X, 2021, 12, 100110. https://doi.org/10.1016/j.omx.2021.100110

    Article  CAS  Google Scholar 

  12. J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. Van Gemert. Pure Appl. Chem., 1996, 68, 1395. https://doi.org/10.1351/pac199668071395

    Article  CAS  Google Scholar 

  13. B. Van Gemert. Naphtopyrans (Chromenes). In: Main Photochromic Families: Organic Photochromic and Thermochromic Compounds, Vol. 1 / Eds. J. C. Crano and R. J. Guglielmetti. New York, London: Plenum, 1999, 111-141. https://doi.org/10.1007/0-306-46911-1_4

    Chapter  Google Scholar 

  14. S. N. Corns, S. M. Partington, and A. D. Towns. Color. Technol., 2009, 125, 249. https://doi.org/10.1111/j.1478-4408.2009.00204.x

    Article  CAS  Google Scholar 

  15. M. A. Chowdhury, M. Joshi, and B. S. Butola. J. Eng. Fibers Fabr., 2014, 9, 107. https://doi.org/10.1177%2F155892501400900113

    Article  Google Scholar 

  16. A. P. Periyasamy, M. Vikova, and M. Vik. Text. Prog., 2017, 49, 53. https://doi.org/10.1080/00405167.2017.1305833

    Article  Google Scholar 

  17. S. M. Sabir and D. H. Rasheed. Syst. Rev. Pharm., 2020, 11, 521. https://doi.org/10.5530/srp.2020.1.65

  18. A. Bianco, S. Perissinotto, M. Garbugli, and G. Lanzani. Laser Photonics Rev., 2011, 5, 711. https://doi.org/10.1002/lpor.201000033

    Article  CAS  Google Scholar 

  19. T. W. Wysokinski, E. Czyzewska, and A. H. Rawicz. Thin Solid Films, 1997, 295, 31. https://doi.org/10.1016/S0040-6090(96)09398-4

    Article  CAS  Google Scholar 

  20. M. M. Lerch, W. Szymanski, and B. L. Feringa. Chem. Soc. Rev., 2018, 47, 1910. https://doi.org/10.1039/c7cs00772h

    Article  CAS  PubMed  Google Scholar 

  21. A. Towns. Phys. Sci. Rev., 2021, 6, 477. https://doi.org/10.1515/psr-2020-0191

    Article  Google Scholar 

  22. P. Dedecker, G. C. H. Mo, T. Dertinger, and J. Zhang. Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 10909. https://doi.org/10.1073/pnas.1204917109

    Article  PubMed  PubMed Central  Google Scholar 

  23. H. Cheng, J. Yoon, and H. Tian. Coord. Chem. Rev., 2018, 372, 66. https://doi.org/10.1016/j.ccr.2018.06.003

    Article  CAS  Google Scholar 

  24. X. Chai, H.-H. Han, A. C. Sedgwick, N. Li, Y. Zang, T. D. James, J. Zhang, X.-L. Hu, Y. Yu, Y. Li, , J. Li, X.-P. He, and H. Tian. J. Am. Chem. Soc., 2020, 142, 18005. https://doi.org/10.1021/jacs.0c05379

    Article  CAS  PubMed  Google Scholar 

  25. D. A. Parthenopoulos and P. M. Rentzepis. Science, 1989, 245, 843. https://doi.org/10.1126/science.245.4920.843

    Article  CAS  PubMed  Google Scholar 

  26. A. J. Myles and N. R. Branda. Adv. Funct. Mater., 2002, 12, 167. https://doi.org/10.1002/1616-3028(200203)12:3<167::AID-ADFM167>3.0.CO;2-M

    Article  CAS  Google Scholar 

  27. D. Xiang, H. Jeong, T. Lee, and D. Mayer. Adv. Mater., 2013, 25, 4845. https://doi.org/10.1002/adma.201301589

    Article  CAS  PubMed  Google Scholar 

  28. E. Orgiu and P. Samori. Adv. Mater., 2014, 26, 1827. https://doi.org/10.1002/adma.201304695

    Article  CAS  PubMed  Google Scholar 

  29. S. K. Lazareva, E. M. Glebov, D. A. Nevostruev, D. V. Lonshakov, A. G. Lvov, V. Z. Shirinian, V. A. Zinovyev, and A. B. Smolentsev. Mendeleev Commun., 2019, 29, 285. https://doi.org/10.1016/j.mencom.2019.05.014

    Article  CAS  Google Scholar 

  30. S. K. Lazareva, E. M. Glebov. A. V. Metelitsa, A. G. Lvov, V. Z. Shirinian, M. Grecova-Trencanova, D. Velic, and A. B. Smolentsev. Mendeleev Commun., 2019, 29, 564. https://doi.org/10.1016/j.mencom.2019.09.029

    Article  CAS  Google Scholar 

  31. M. Inouye, M. Ueno, T. Kitao, and K. Tsuchiya. J. Am. Chem. Soc., 1990, 112, 8977. https://doi.org/10.1021/ja00180a051

    Article  CAS  Google Scholar 

  32. O. A. Fedorova, F. Maurel, E. N. Ushakov, V. B. Nazarov, S. P. Gromov, A. V. Chebunkova, A. V. Feofanov, I. S. Alaverdyan, M. V. Alfimov, and F. Barigelletti. New J. Chem., 2003, 27, 1720. https://doi.org/10.1039/B304874H

    Article  CAS  Google Scholar 

  33. V. V. Korolev, D. Yu. Vorobyev, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, A. V. Koshkin, O. A. Fedorova, S. P. Gromov, M. V. Alfimov, Yu. V. Shklyaev, T. S. Vshivkova, Yu. S. Rozhkova, A. G. Tolstikov, V. A. Lokshin, and A. Samat. J. Photochem. Photobiol. A, 2007, 192, 75. https://doi.org/10.1016/j.jphotochem.2007.05.006

    Article  CAS  Google Scholar 

  34. X. Hu, M. E. McFadden, R. W. Barber, and M. J. Robb. J. Am. Chem. Soc., 2018, 140, 14073. https://doi.org/10.1021/jacs.8b09628

    Article  CAS  PubMed  Google Scholar 

  35. S. Fredrich, A. Bonasera, V. Valderrey, and S. Hecht. J. Am. Chem. Soc., 2018, 140, 6432. https://doi.org/10.1021/jacs.8b02982

    Article  CAS  PubMed  Google Scholar 

  36. M. Irie. Proc. Jpn. Acad., Ser. B, 2010, 86, 472. https://doi.org/10.2183/pjab.86.472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E. Hadjoudis and I. M. Mavridis. Chem. Soc. Rev., 2004, 33, 579. https://doi.org/10.1039/B303644H

    Article  PubMed  Google Scholar 

  38. K. Amimoto and T. Kawato. J. Photochem. Photobiol. C, 2005, 6, 207. https://doi.org/10.1016/j.jphotochemrev.2005.12.002

    Article  CAS  Google Scholar 

  39. O. S. Bushuyev and C. J. Barrett. Photochromism in the Solid State. In: Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work / Ed. T.J. White. Wiley, 2017, 37-78.

  40. A. Gonzalez, E. S. Kengmana, M. V. Fonseca, and G. G. D. Han. Mater. Today Adv., 2020, 6, 100058. https://doi.org/10.1016/j.mtadv.2020.100058

    Article  Google Scholar 

  41. B. S. Lukyanov, A. V. Metelitsa, N. A. Voloshin, Yu. S. Alexeenko, M. B. Lukyanova, G. T. Vasilyuk, S. A. Maskevich, and E. L. Mukhanov. Int. J. Photoenergy, 2005, 7, 17. https://doi.org/10.1155/S1110662X05000036.

  42. A. D. Pugachev, V. V. Tkachev, I. V. Ozhogin, M. B. Lukyanova, S. M. Aldoshin, V. I. Minkin, E. L. Mukhanov, A. V. Metelitsa, N. V. Stankevich, and B. S. Lukyanov. Russ. Chem. Bull., 2021, 70, 2090. https://doi.org/10.1007/s11172-021-3320-2

    Article  CAS  Google Scholar 

  43. S. Benard and P. Yu. Chem. Commun., 2000, 65. https://doi.org/10.1039/A907675A

    Article  Google Scholar 

  44. M. R. di Nunzio, P. L. Gentili, A. Romani, and G. Favaro. J. Phys. Chem. C, 2010, 114, 6123. https://doi.org/10.1021/jp9109833

    Article  CAS  Google Scholar 

  45. V. F. Plyusnin, E. M. Glebov, V. P. Grivin, V. V. Korolev, A. V. Metelitsa, N. A. Voloshin, and V. I. Minkin. Russ. Chem. Bull., 2011, 60, 124. https://doi.org/10.1039/C3CC44119A

    Article  CAS  Google Scholar 

  46. E. M. Glebov, A. B. Smolentsev, V. V. Korolev, V. F. Plyusnin, A. V. Metelitsa, N. A. Voloshin, and V. I. Minkin. Chem. Sustainable Dev., 2011, 19, 599.

  47. D. G. Patel, J. B. Benedict, R. A. Kopelman, and N. L. Frank. Chem. Commun., 2005, 2208. https://doi.org/10.1039/B417026A

    Article  Google Scholar 

  48. M. Nanasawa. Photochromism by Electron Transfer: Photochromic Viologens. In: Main Photochromic Families: Organic Photochromic and Thermochromic Compounds, Vol. 1 / Eds. J. C. Crano and R. J. Guglielmetti. New York, London: Plenum, 1999, 341-369. https://doi.org/10.1007/0-306-46911-1_10

    Chapter  Google Scholar 

  49. O. Poizat, C. Giannotti, and C. Sourisseau. J. Chem. Soc., Perkin Trans. 2, 1987, 829. https://doi.org/10.1039/P29870000829

    Article  Google Scholar 

  50. Q. Sui, P. Li, R. Sun, Yu-H. Fang, B.-W. Wang, E.-Q Gao, and S. Gao. J. Phys. Chem. Lett., 2020, 11, 9282. https://doi.org/10.1021/acs.jpclett.0c02690

    Article  CAS  PubMed  Google Scholar 

  51. Z. Sun, Y. Li, Th. Prakasam, W. Li, H. Wu, Zh. Zhang, K. Di, K. K. Baldridge, A. Trabolsi, and M. A. Olson. Chem. – Eur. J., 2021, 27, 9360. https://doi.org/10.1002/chem.202100601

    Article  CAS  PubMed  Google Scholar 

  52. A. A. Shmakova, E. M. Glebov, V. V. Korolev, D. V. Stass, E. Benassi, P. A. Abramov, and M. N. Sokolov. Dalton Trans., 2018, 47, 2247. https://doi.org/10.1039/c7dt04077f

    Article  CAS  PubMed  Google Scholar 

  53. J. Harada, H. Uekusa, and Y. Ohashi. J. Am. Chem. Soc., 1999, 121, 5809. https://doi.org/10.1021/ja9842969

    Article  CAS  Google Scholar 

  54. K. Amimoto and T. Kawato. J. Photochem. Photobiol. C, 2005, 6, 207. https://doi.org/10.1016/j.jphotochemrev.2005.12.002

    Article  CAS  Google Scholar 

  55. F. Robert, A. D. Naik, B. Tinant, R. Robiette, and Y. Garcia. Chem. – Eur. J., 2009, 15, 4327. https://doi.org/10.1002/chem.200801932

    Article  CAS  PubMed  Google Scholar 

  56. M. S. M. Rawat, S. Mal, and P. Singh. Open Chem. J., 2015, 2, 7. https://doi.org/10.2174/1874842201502010007

    Article  Google Scholar 

  57. Sh. Zhu, , J. Sun, Y. Yang, and Ch. Yue. J. Chem., 2016, 1. https://doi.org/10.1155/2016/8460462

    Article  CAS  Google Scholar 

  58. P. Naumov, A. Sekine, H. Uekusa, and Yu. Ohashi. J. Am. Chem. Soc., 2002, 124, 8540. https://doi.org/10.1021/ja0170908

    Article  CAS  PubMed  Google Scholar 

  59. L. Liu, X. Xie, D. Jia, J. Guo, and X. Xie. J. Org. Chem., 2010, 75, 4742. https://doi.org/10.1021/jo100372z

    Article  CAS  PubMed  Google Scholar 

  60. J. Guo, D. Jia, L. Liu, H. Yuan, and F. Li. J. Mater. Chem., 2011, 21, 3210. https://doi.org/10.1039/C0JM03216F

    Article  CAS  Google Scholar 

  61. Sh. Ding, H. Lin, Yu. Yu, L. Liu, C. Deng, J. Zhao, and D. Jia. J. Phys. Chem. C, 2018, 122, 24933. https://doi.org/10.1021/acs.jpcc.8b07408

    Article  CAS  Google Scholar 

  62. S. Kobatake and M. Irie. Chem. Lett., 2004, 33, 904. https://doi.org/10.1246/cl.2004.904

    Article  CAS  Google Scholar 

  63. J. Harada, R. Nakajima, and K. Ogawa. J. Am. Chem. Soc., 2008, 130, 7085. https://doi.org/10.1021/ja077407p

    Article  CAS  PubMed  Google Scholar 

  64. J. Harada, M. Taira, and K. Ogawa. Cryst. Grows. Des., 2017, 17, 2682. https://doi.org/10.1021/acs.cgd.7b00182

    Article  CAS  Google Scholar 

  65. V. A. Barachevsky. J. Photochem. Photobiol. A, 2008, 196, 180. https://doi.org/10.1016/j.jphotochem.2007.08.010

    Article  CAS  Google Scholar 

  66. M. Vlajic, W. Unger, J. Bruns, and K. Rueck-Braun. Appl. Surf. Sci., 2019, 465, 686. https://doi.org/10.1016/j.apsusc.2018.09.159

    Article  CAS  Google Scholar 

  67. M. Irie. Chem. Rev., 2000, 100, 1685. https://doi.org/10.1021/cr980069d

    Article  CAS  PubMed  Google Scholar 

  68. M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake. Chem. Rev., 2014, 114, 12174. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  69. A. G. Lvov, M. M. Khusniyarov, and V. Z Shirinian. J. Photochem. Photobiol. C, 2018, 36, 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002

    Article  CAS  Google Scholar 

  70. J. Zhang and H. Tian. Adv. Opt. Mat., 2018, 6, 1701278. https://doi.org/10.1002/adom.201701278

    Article  CAS  Google Scholar 

  71. K. Shibata, K. Muto, S. Kobatake, and M. Irie. J. Phys. Chem. A, 2002, 106, 209. https://doi.org/10.1021/jp0115648

    Article  CAS  Google Scholar 

  72. M. I. Nikolaeva, V. V. Korolev, E. A. Pritchina, E. M. Glebov, V. F. Plyusnin, A. V. Metelitsa, N. A. Voloshin, and V. I. Minkin. J. Phys. Org. Chem., 2011, 24, 833. https://doi.org/10.1002/poc.1852

    Article  Google Scholar 

  73. A. V. Zakharov, A. G. Lvov, I. A. Rostovtseva, A. V. Metelitsa, A. V. Chernyshev, M. M. Krayushkin, A. V. Yadykov, and V. Z. Shirinian. Photochem. Photobiol. Sci., 2019, 18, 1101. https://doi.org/10.1039/C8PP00507A

    Article  CAS  PubMed  Google Scholar 

  74. M. V. Oplachko, A. B. Smolentsev, I. M. Magin, I. P. Pozdnyakov, V. A. Nichiporenko, V. P. Grivin, V. F. Plyusnin, V. L. Vyazovkin, V. V. Yanshole, M. V. Parkhats, A. V. Yadykov, V. Z. Shirinian, and E. M. Glebov. Phys. Chem. Chem. Phys., 2020, 22, 5220. https://doi.org/10.1039/C9CP05744G

    Article  CAS  PubMed  Google Scholar 

  75. M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Yu. Shindo. Chem. Commun., 1999, 747. https://doi.org/10.1039/A809410A

    Article  Google Scholar 

  76. M. Herder, B. M. Schmidt, L. Grubert, M. Pätzel, J. Schwarz, and S. Hecht. J. Am. Chem. Soc., 2015, 137, 2738. https://doi.org/10.1021/ja513027s

    Article  CAS  PubMed  Google Scholar 

  77. V. V. Semionova, E. M. Glebov, A. B. Smolentsev, V. V. Korolev, V. P. Grivin, V. F. Plyusnin, and V. Z. Shirinian. Kinet. Catal., 2015, 56, 316. https://doi.org/10.1134/S0023158415030180

    Article  CAS  Google Scholar 

  78. C. Sarter, M. Heimes, and A. Jäschke. Beilshtein J. Org. Chem., 2016, 12, 1103. https://doi.org/10.3762/bjoc.12.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. V. V. Semionova, V. V. Korolev, E. M. Glebov, V. Z. Shirinyan, and S. A. Sapchenko. J. Struct. Chem., 2016, 57(6), 1216. https://doi.org/10.15372/JSC20160623

    Article  Google Scholar 

  80. E. N. Cho, D. Zhitomirsky, G. G. D. Han, , and J. C. Grossman. ACS Appl. Mater. Interfaces, 2017, 9, 8679. https://doi.org/10.1021/acsami.6b15018

    Article  CAS  PubMed  Google Scholar 

  81. K. S. S. P. Rao, S. M. Hubig, J. N. Moorthy, and J. K. Kochi. J. Org. Chem., 1999, 64, 8098. https://doi.org/10.1021/jo9903149

    Article  CAS  PubMed  Google Scholar 

  82. B. Lv, Z. Wu, C. Ji, W. Yang, D. Yan, and M. Yi. J. Mater. Chem. C, 2015, 3, 8519. https://doi.org/10.1039/C5TC01817J

    Article  CAS  Google Scholar 

  83. G. S. Ananchenko, K. A. Udachin, J. A. Ripmeester, T. Perrier, and A. W. Coleman. Chem. – Eur. J., 2006, 12, 2441. https://doi.org/10.1002/chem.200501026

    Article  CAS  PubMed  Google Scholar 

  84. H. Wu, , and Y. Liu. Adv. Mater., 2017, 29, 1605271. https://doi.org/10.1002/adma.201605271

    Article  CAS  Google Scholar 

  85. M. Fujita, Sh.-Y. Yu, T. Kusukawa, H. Funaki, K. Ogura, and K. Yamaguchi. Angew. Chem., Int. Ed., 1998, 48, 3418. https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2082::AID-ANIE2082>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  86. D. Samanta, S. Mukherjee, Y. P. Patil, and P.S. Mukherjee. Chem. Eur. – J., 2012, 18, 12322. https://doi.org/10.1002/chem.201201679

    Article  CAS  PubMed  Google Scholar 

  87. D. Samanta, D. Galaktionova, J. Gemen, L. J. W. Shimon, Ya. Diskin-Posner, L. Avram, P. Kral, and R. Klajn. Nat. Commun., 2018, 9, 641. https://doi.org/10.1038/s41467-017-02715-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. D. Samanta, J. Gemen, Z. , L. J. W. Shimon, and R. Klajn. Proc. Natl. Acad. Sci., 2018, 115, 9379. https://doi.org/10.1073/pnas.1712787115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. A. K. Cheetham, G. Ferey, and T. Loiseau. Angew. Chem., Int. Ed., 1999, 38, 3268. https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22%3C3268::AID-ANIE3268%3E3.0.CO;2-U

    Article  CAS  Google Scholar 

  90. D. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. LaDuca, Jr., R. C. Haushalter, and J. Zubieta. Coord. Chem. Rev., 1999, 190-192, 737. https://doi.org/10.1016/S0010-8545(99)00119-8

    Article  CAS  Google Scholar 

  91. A. V. Gerasimenko and P. L. Davidovich. Vestn. Dal′nevost. Otd. Ross. Akad. Nauk, 2006, (5), 17. [In Russian]

  92. R. Pardo, M. Zayat, and D. Levy. Chem. Soc. Rev., 2011, 40, 672. https://doi.org/10.1039/c0cs00065e.

    Article  CAS  PubMed  Google Scholar 

  93. T. He and J. Yao. Prog. Mater. Sci., 2006, 51, 810. https://doi.org/10.1016/j.pmatsci.2005.12.001

    Article  CAS  Google Scholar 

  94. M.-S. Wang, G. Xu, Z.-J. Zhang, and G.-C. Guo. Chem. Commun., 2010, 46, 361. https://doi.org/10.1039/b917890b

    Article  CAS  Google Scholar 

  95. F. Dufaud and F. Lefebvre. Materials, 2010, 3, 682. https://doi.org/10.3390/ma3010682.

    Article  CAS  PubMed Central  Google Scholar 

  96. Y. Huang, Q. Y. Pan, X. W. Dong, and Z. X. Cheng. Mater. Chem. Phys., 2006, 97, 431. https://doi.org/10.1016/j.matchemphys.2005.08.039

    Article  CAS  Google Scholar 

  97. G. Bercovik, V. Krongauz, and V. Weiss. Chem. Rev., 2000, 100, 1741. https://doi.org/10.1021/cr9800715

    Article  CAS  PubMed  Google Scholar 

  98. I. Yildiz, E. Deniz, and F. M. Raymo. Chem. Soc. Rev., 2009, 38, 1859. https://doi.org/10.1039/b804151m

    Article  CAS  PubMed  Google Scholar 

  99. Ch. Ritchie, G. Vamvounis, H. Soleimaninejad, T. A. Smith, E. J. Bieske, and V. Dryza. Phys. Chem. Chem. Phys., 2017, 19, 19984. https://doi.org/10.1039/c7cp02818k

    Article  CAS  PubMed  Google Scholar 

  100. E. Pantuso, G. De Filpo, and F. Pasquale Nicoletta. Adv. Opt. Mater., 2019, 1900252. https://doi.org/10.1002/adom.201900252

    Article  CAS  Google Scholar 

  101. A. Abdollahi, H. Roghani-Mamaqani, and B. Razavi. Prog. Polym. Sci, 2019, 28, 101149. https://doi.org/10.1016/j.progpolymsci.2019.101149

    Article  CAS  Google Scholar 

  102. K. Sadeghi, J.-Y. Yoon, and J. Seo. Polym. Rev., 2020, 60, 442. https://doi.org/10.1080/15583724.2019.1676775

    Article  CAS  Google Scholar 

  103. N. Andersson, P. Alberius, J. Ortegren, M. Lindgren, and L. Bergstrom. J. Mater. Chem., 2005, 15, 3507. https://doi.org/10.1039/B505319F

    Article  CAS  Google Scholar 

  104. V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti. Russ. Chem. Rev., 2016, 85, 280. https://doi.org/10.1070/RCR4554

    Article  CAS  Google Scholar 

  105. H. A. Schwartz, U. Ruschewitz, and L. Heinke. Photochem. Photobiol. Sci., 2018, 17, 864. https://doi.org/10.1039/c7pp00456g

    Article  CAS  PubMed  Google Scholar 

  106. R. Haldar, L. Heinke, and C. Woll. Adv. Mater., 2019, 1905227. https://doi.org/10.1002/adma.201905227

    Article  CAS  Google Scholar 

  107. F. Bigdeli, Ch. T. Lollar, A. Morsali, and H.-C. Zhou. Angew. Chem., Int. Ed., 2020, 59, 4652. https://doi.org/10.1002/anie.201900666

    Article  CAS  Google Scholar 

  108. S. Castellanos, F. Kapteijn, and J. Gascon. CrystEngComm, 2016, 18, 4006. https://doi.org/10.1039/c5ce02543e

    Article  CAS  Google Scholar 

  109. A. M. Rice, V. A. Galitskiy, A. A. Berseneva, G. A. Leith, and N. B. Shustova. Chem. Rev., 2020, 120, 8790. https://doi.org/10.1021/acs.chemrev.9b00350

    Article  CAS  PubMed  Google Scholar 

  110. W. Danowski, T. van Leeuven, W. R. Browne, and B. L. Feringa. Nanoscale Adv., 2021, 3, 24. https://doi.org/10.1039/d0na00647e

    Article  CAS  PubMed  Google Scholar 

  111. G. A. Leith, C. R. Martin, A. Mathur, P. Kittikhunnatham, K. Ch. Park, and N. B. Shustova. Adv. Energy Mater., 2022, 12, 2100441. https://doi.org/10.1002/aenm.202100441

    Article  CAS  Google Scholar 

  112. L. Pan, H. Liu, X. Lei, X. Huang, D. H. Olson, N. J. Turro, and J. Li. Angew. Chem., Int. Ed., 2003, 42, 542. https://doi.org/10.1002/anie.200390156

    Article  CAS  Google Scholar 

  113. T. Haneda, M. Kawano, T. Kojima, and M. Fujita. Angew. Chem., Int. Ed., 2007, 46, 6643. https://doi.org/10.1002/anie.200700999

    Article  CAS  Google Scholar 

  114. H. Meier. Angew. Chem., Int. Ed., 1992, 31, 1399. https://doi.org/10.1002/anie.199213993

    Article  Google Scholar 

  115. G. S. Ananchenko, K. A. Udachin, J. A. Ripmeester, T. Perrier, and A. W. Coleman. Chem. – Eur. J., 2006, 12, 2441. https://doi.org/10.1002/chem.200501026

    Article  CAS  PubMed  Google Scholar 

  116. F. B. Mallory, C. S. Wood, J. T. Gordon, L. L. Lindquist, and M. L. Savitz. J. Am. Chem. Soc., 1962, 84, 4361. https://doi.org/10.1021/ja00881a044

    Article  CAS  Google Scholar 

  117. D. H. Waldeck. Chem. Rev., 1991, 91, 415. https://doi.org/10.1021/cr00003a007

    Article  CAS  Google Scholar 

  118. M. S. Syamala and V. Ramamurthy. J. Org. Chem., 1986, 51, 3712. https://doi.org/10.1021/jo00369a033

    Article  CAS  Google Scholar 

  119. K. Ohara, Y. Inokuma, and M. Fujita. Angew. Chem., Int. Ed., 2010, 49, 5507. https://doi.org/10.1002/anie.201001902

    Article  CAS  PubMed  Google Scholar 

  120. V. V. Semionova, E. M. Glebov, V. V. Korolev, S. A. Sapchenko, D. G. Samsonenko, and V. P. Fedin. Inorg. Chim. Acta, 2014, 409B, 342. https://doi.org/10.1016/j.ica.2013.09.048

    Article  CAS  Google Scholar 

  121. S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, M. S. Melgunov, and V. P. Fedin. Dalton Trans., 2011, 40, 2196. https://doi.org/10.1039/C0DT00999G

    Article  CAS  PubMed  Google Scholar 

  122. J. Vapaavuori, A. Goulet-Hanssens, I. T. S. Heikkinen, Ch. J. Barrett, and A. Priimagi. Chem. Mater., 2014, 26, 5089. https://doi.org/10.1021/cm5023129

    Article  CAS  Google Scholar 

  123. U. Ruschewitz and D. Hermann. Z. Anorg. Allg. Chem., 2010, 636, 2068. https://doi.org/10.1002/zaac.201009038

    Article  Google Scholar 

  124. H. Li, M. Eddaoudi, M. OKeeffe, and O. M. Yaghi. Nature (London), 1999, 402, 276. https://doi.org/10.1038/46248

    Article  CAS  Google Scholar 

  125. G. Férey. Chem. Soc. Rev., 2008, 37, 191. https://doi.org/10.1039/B618320B

    Article  CAS  PubMed  Google Scholar 

  126. D. Hermann, H. Emerich, R. Lepski, D. Schaniel, and U. Ruschewitz. Inorg. Chem., 2013, 52, 2744. https://doi.org/10.1021/ic302856b

    Article  CAS  PubMed  Google Scholar 

  127. L. Silvester, A. Naim, A. Fateeva, G. Postole, A. Auroux, L. Massin, P. Gelin, and L. Bois. Microporous Mesoporous Mater., 2020, 306, 110443. https://doi.org/10.1016/j.micromeso.2020.110443

    Article  CAS  Google Scholar 

  128. Ch. Volkringer, M. Meddouri, T. Loiseau, N. Guillou, J. Marrot, G. Férey, M. Haouas, F. Taulelle, N. Audebrand, and M. Latroche. Inorg. Chem., 2008, 47, 11892. https://doi.org/10.1021/ic801624v

    Article  CAS  PubMed  Google Scholar 

  129. A. D. Hermann, H. A. Schwartz, M. Werker, D. Schaniel, and U. Ruschewitz. Chem. – Eur. J., 2019, 25, 3606. https://doi.org/10.1002/chem.201805391

    Article  CAS  PubMed  Google Scholar 

  130. T. Loiseau, Ch. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, and G. Ferey. Chem. – Eur. J., 2014, 10, 1373. https://doi.org/10.1002/chem.200305413

    Article  CAS  PubMed  Google Scholar 

  131. H. Agarkar and D. Das. J. Mol. Struct., 2019, 1184, 435. https://doi.org/10.1016/j.molstruc.2019.02.059

    Article  CAS  Google Scholar 

  132. B. M. Orlioglo, K. A. Kovalenko, and E. M. Glebov. J. Struct. Chem., 2022, 63(1), 152. https://doi.org/10.1134/S0022476622010152

    Article  CAS  Google Scholar 

  133. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki. Science, 2005, 309, 2040. https://doi.org/10.1126/science.1116275

    Article  CAS  PubMed  Google Scholar 

  134. P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, and F. Kapteijn. Chem. Mater., 2011, 23, 2565. https://doi.org/10.1021/cm103644b

    Article  CAS  Google Scholar 

  135. I. M. Walton, J. M. Cox, J. A. Coppin, C. M. Linderman, D. G. Patel, and J. B. Benedict. Chem. Commun., 2013, 8012. https://doi.org/10.1039/c3cc44119a

    Article  CAS  Google Scholar 

  136. S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie. J. Am. Chem. Soc., 1999, 121, 2380. https://doi.org/10.1021/ja983717j

    Article  CAS  Google Scholar 

  137. D. N. Dybtsev, H. Chun, and K. Kim. Angew. Chem., Int. Ed., 2004, 43, 5033. https://doi.org/10.1002/anie.200460712

    Article  CAS  Google Scholar 

  138. V. Z. Shirinian, A. A. Shimkin, D. V. Lonshakov, A. G. Lvov, and M. M. Krayushkin. J. Photochem. Photobiol. A, 2012, 233, 1. https://doi.org/10.1016/j.jphotochem.2012.02.011

    Article  CAS  Google Scholar 

  139. D. Mendive-Tapia, A. Perrier, M. Bearpark, M. A. Robb, B. Lasorne, and D. Jacquemin. Phys. Chem. Chem. Phys., 2014, 16, 18463. https://doi.org/10.1039/c4cp03001j

    Article  CAS  PubMed  Google Scholar 

  140. M. Herder, B. M. Schmidt, L. Grubert, M. Pätzel, J. Schwarz, and S. Hecht. J. Am. Chem. Soc., 2015, 137, 2738. https://doi.org/10.1021/ja513027s

    Article  CAS  PubMed  Google Scholar 

  141. F. Zhang, X. Q. Zou, W. Feng, X. J. Zhao, X. F. Jing, F. X. Sun, H. Ren, and G. S. Zhu. J. Mater. Chem., 2012, 22, 25019. https://doi.org/10.1039/c2jm34618d

    Article  CAS  Google Scholar 

  142. U. G. Randika Lakmali and C. V. Hettiarachchi. CrystEngComm, 2015, 17, 8607. https://doi.org/10.1039/c5ce01639h

    Article  CAS  Google Scholar 

  143. H. Wu, W. Zhou, and T. Yildirim. J. Am. Chem. Soc., 2009, 131, 4995. https://doi.org/10.1021/ja900258t

    Article  CAS  PubMed  Google Scholar 

  144. H. A. Schwartz, S. Olthof, D. Schaniel, K. Meerholz, and U. Ruschewitz. Inorg. Chem., 2017, 56, 13100. https://doi.org/10.1021/acs.inorgchem.7b01908

    Article  CAS  PubMed  Google Scholar 

  145. Y. Zeng, Z. Fu, H. Chen, C. Liu, S. Liao, and J. Dai. Chem. Commun., 2012, 48, 8114. https://doi.org/10.1039/c2cc33823h

    Article  CAS  Google Scholar 

  146. S. Hu, L. Lv, S. Chen, M. You, and Z. Fu. Cryst. Growth Des., 2016, 16, 6705. https://doi.org/10.1021/acs.cgd.6b01129

    Article  CAS  Google Scholar 

  147. X. Zhang, Y. Gong, F. Wu, N. Deng, I. P. Pozdnyakov, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, and N. M. Bazhin. Russ. Chem. Bull., 2009, 58, 1828. https://doi.org/10.1007/s11172-009-0249-2

    Article  CAS  Google Scholar 

  148. X.-S. Xing, Z.-W Chen, L.-Z. Cai, C. Sun, L.-R. Cai, M.-S. Wang, and G.-C. Guo. RSC Adv., 2016, 6, 24190. https://doi.org/10.1039/C5RA25707G

    Article  CAS  Google Scholar 

  149. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, and C. Woll. J. Am. Chem. Soc., 2007, 129, 15118. https://doi.org/10.1021/ja076210u

    Article  CAS  PubMed  Google Scholar 

  150. J. Liu and C. Woll. Chem. Soc. Rev., 2017, 46, 5730. https://doi.org/10.1039/C7CS00315C

    Article  CAS  PubMed  Google Scholar 

  151. K. Muller, J. Wadhwa, J. S. Malhi, L. Schottner, A. Welle, H. Schwartz, D. Hermann, U. Ruschewitz, and L. Heinke. Chem. Commun., 2017, 8070. https://doi.org/10.1039/c7cc00961e

    Article  CAS  Google Scholar 

  152. Q. M. Wang, D. Shen, M. Bülow, M. L. Lau, Sh. Deng, F. R. Fitch, N. O. Lemkoff, and J. Semanscin. Microporous Mesoporous Mater., 2002, 55, 217. https://doi.org/10.1016/S1387-1811(02)00405-5

    Article  Google Scholar 

  153. J. Y. Lee, J. Li, and J. Jagiello. J. Solid State Chem., 2005, 178, 2527. https://doi.org/10.1016/j.jssc.2005.07.002

    Article  CAS  Google Scholar 

  154. T. Koehler, I. Strauss, A. Mundstock, J. Caro, and F. Marlow. J. Phys. Chem. Lett., 2021, 12, 8903. https://doi.org/10.1021/acs.jpclett.1c02489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. S. Garg, H. Schwartz, M. Kozlowska, A. B. Kanj, K. Muller, W. Wenzel, U. Ruschewitz, and L. Heinke. Angew. Chem., Int. Ed., 2019, 58, 1193. https://doi.org/10.1002/anie.201811458

    Article  CAS  Google Scholar 

  156. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K. P. Lillerud. J. Am. Chem. Soc., 2008, 130, 13850. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  157. W.-Q. Fu, M. Liu, Z.-G. Gu, S.-M. Chen, and J. Zhang. Cryst. Growth Des., 2016, 16, 5487. https://doi.org/10.1021/acs.cgd.6b00935

    Article  CAS  Google Scholar 

  158. S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Inorg. Chem., 2013, 52, 9702. https://doi.org/10.1021/ic400940w

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation within a State Assignment and by the Russian Foundation for Basic Research (project No. 20-03-00708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Glebov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 9, 97937.https://doi.org/10.26902/JSC_id97937

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semionova, V.V., Glebov, E.M. SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW. J Struct Chem 63, 1453–1483 (2022). https://doi.org/10.1134/S0022476622090086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622090086

Keywords

Navigation