Skip to main content
Log in

SYNTHESES, CRYSTAL STRUCTURES AND ANTIBACTERIAL ACTIVITIES OF MONONUCLEAR NICKEL(II) COMPLEXES WITH SIMILAR SCHIFF BASES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two mononuclear nickel(II) complexes, [Ni(L1)2] (1) and [Ni(L2)2] (2), where L1 and L2 are the anions of 4-methylbenzoic acid (1-pyridin-2-ylmethylidene)hydrazide (HL1) and benzoic acid (1-pyridine-2-ylethylidene)hydrazide (HL2), respectively, were prepared and characterized by physico-chemical methods and single crystal X-ray diffraction. The tridentate Schiff base ligands coordinate to the Ni atoms through the pyridine nitrogen, imino nitrogen and enolate oxygen atoms. The Ni atom in each complex is six coordinated by two Schiff base ligands, to form octahedral coordination. To investigate the influence of the position of methyl group on the antibacterial activities, the complexes have been studied on the bacteria Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas fluorescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Y. Chen, P. Li, S. J. Su, M. Chen, J. He, L. W. Liu, M. He, H. Wang, and W. Xue. RSC Adv., 2019, 9, 23045. https://doi.org/10.1039/c9ra05139b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Fekri, M. Salehi, A. Asadi, and M. Kubicki. Inorg. Chim. Acta, 2019, 484, 245. https://doi.org/10.1016/j.ica.2018.09.022

    Article  CAS  Google Scholar 

  3. D. A. Sabbah, F. Al-Tarawneh, W. H. Talib, K. Sweidan, S. K. Bardaweel, E. Al-Shalabi, H. A. Zhong, G. Abu Sheikha, R. Abu Khalaf, and M. S. Mubarak. Med. Chem., 2018, 14, 695. https://doi.org/10.2174/1573406414666180412160142

    Article  CAS  Google Scholar 

  4. H. B. Zhou, C. Chen, Y. S. Liu, and X. P. Shen. Inorg. Chim. Acta, 2015, 437, 188. https://doi.org/10.1016/j.ica.2015.08.020

    Article  CAS  Google Scholar 

  5. M. Yadav, V. Mereacre, S. Lebedkin, M. M. Kappes, A. K. Powell, and P. W. Roesky. Inorg. Chem., 2015, 54, 773. https://doi.org/10.1021/ic5014957

    Article  CAS  PubMed  Google Scholar 

  6. M. Alexandru, M. Cazacu, A. Arvinte, S. Shova, C. Turta, B. C. Simionescu, A. Dobrov, E. C. B. A. Alegria, L. M. D. R. S. Martins, A. J. L. Pombeiro, and V. B. Arion. Eur. J. Med. Chem., 2014, 1, 120. https://doi.org/10.1002/ejic.201300969

    Article  CAS  Google Scholar 

  7. K. Jana, S. Das, H. Puschmann, S. C. Debnath, A. Shukla, A. K. Mahanta, M. Hossain, T. Maity, and B. C. Samanta. Inorg. Chim. Acta, 2019, 487, 128. https://doi.org/10.1016/j.ica.2018.12.007

    Article  CAS  Google Scholar 

  8. F. Forouzandeh, H. Keypour, M. H. Zebarjadian, M. Mahmoudabadi, L. Hosseinzadeh, R. Karamian, M. A. Khoei, and R. W. Gable. Polyhedron, 2019, 160, 238. https://doi.org/10.1016/j.poly.2018.12.052

    Article  CAS  Google Scholar 

  9. M. H. Esfahani, H. Iranmanesh, J. E. Beves, M. Kaur, J. P. Jasinski, and M. Behzad. J. Coord. Chem., 2019, 72, 2326. https://doi.org/10.1080/00958972.2019.1643846

    Article  CAS  Google Scholar 

  10. M. Zhang, D.-M. Xian, H.-H. Li, J.-C. Zhang, and Z.-L. You. Aust. J. Chem., 2012, 65, 343. https://doi.org/10.1071/CH11424

    Article  CAS  Google Scholar 

  11. P. G. Avaji, C. H. V. Kumar, S. A. Patil, K. N. Shivananda, and C. Nagaraju. Eur. J. Med. Chem., 2009, 44, 3552. https://doi.org/10.1016/j.ejmech.2009.03.032

    Article  CAS  PubMed  Google Scholar 

  12. M. J. Hearn, M. H. Cynamon, M. F. Chen, R. Coppins, J. Davis, H. J. O. Kang, A. Noble, B. Tu-Sekine, M. S. Terrot, D. Trombino, M. Thai, E. R. Webster, and R. Wilson. Eur. J. Med. Chem., 2009, 44, 4169. https://doi.org/10.1016/j.ejmech.2009.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Datta, N.-T. Chuang, and J.-H. Huang. J. Chem. Crystallogr., 2011, 41, 1780. https://doi.org/10.1007/s10870-011-0173-9

    Article  CAS  Google Scholar 

  14. A. Datta, N.-T. Chuang, M.-H. Sie, J.-H. Huang, and H. M. Lee. Acta Crystallogr., Sect. E, 2010, 66, m359. https://doi.org/10.1107/S1600536810007336

    Article  CAS  Google Scholar 

  15. Bruker. SMART and SAINT. Madison, WI: 2002.

  16. G. M. Sheldrick. SADABS. Program for Empirical Absorption Correction of Area Detector. Germany: University of Göttingen, 1996.

  17. G. M. Sheldrick. SHELXTL V5.1 Software Reference Manual. Madison, WI: Bruker AXS, 1997.

  18. H.-H. Li, Z.-L. You, C.-L. Zhang, M. Yang, L.-N. Gao, and L. Wang. Inorg. Chem. Commun., 2013, 29, 118. https://doi.org/10.1016/j.inoche.2012.12.023.

    Article  CAS  Google Scholar 

  19. Z.-L. You, M. Zhang, and D.-M. Xian. Dalton Trans., 2012, 41, 2515. https://doi.org/10.1039/c1dt11566a

    Article  CAS  PubMed  Google Scholar 

  20. Y. Luo, J. Wang, X. Ding, R. Ni, M. Li, T. Yang, J. Wang, C. Jing, and Z. You. Inorg. Chim. Acta, 2021, 516, 120146. https://doi.org/10.1016/j.ica.2020.120146

    Article  CAS  Google Scholar 

  21. X.-M. Hu, L.-W. Xue, G.-Q. Zhao, and Y.-J. Han. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, 42, 557. https://doi.org/10.1080/15533174.2011.613884

    Article  CAS  Google Scholar 

  22. L.-W. Xue, X. Wang, and G.-Q. Zhao. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, 42, 1334. https://doi.org/10.1080/15533174.2012.680139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-L. Sang.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 6, pp. 823-825.https://doi.org/10.26902/JSC_id94089

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, YL., Lin, XS., Zou, LF. et al. SYNTHESES, CRYSTAL STRUCTURES AND ANTIBACTERIAL ACTIVITIES OF MONONUCLEAR NICKEL(II) COMPLEXES WITH SIMILAR SCHIFF BASES. J Struct Chem 63, 956–963 (2022). https://doi.org/10.1134/S0022476622060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622060130

Keywords

Navigation