Skip to main content
Log in

CRYSTAL STRUCTURES OF [N′-(2- OXIDOBENZYLIDENE)-N-(PROP-2-EN-1-YL)- CARBAMOHYDRAZONOTHIOATO(2-)](1,10- PHENANTHROLINE)COPPER AND [N′-(2- OXIDOBENZYLIDENE)-N-(PROP-2-EN-1-YL)- CARBAMOHYDRAZONOTHIOATO(2-)](2,2′- BIPYRIDINE)COPPER HEMIHYDRATES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structures and biological properties of [N′-(2-oxidobenzylidene)-N-(prop-2-en-1-yl)-carbamohydrazonothioato(2-)](1,10-phenanthroline)copper hemihydrate [Cu(1,10-Phen)(L)]·0.5H2O (I) and [N′-(2-oxidobenzylidene)-N-(prop-2-en-1-yl)-carbamohydrazonothioato(2-)](2,2′-bipyridine)copper hemihydrate [Cu(2,2′-BPy)(L)]·0.5H2O (II), where Н2L is 2-(2-hydroxybenzylidene)-N-(prop-2-en-1-yl)hydrazinecarbothioamide, are determined. The asymmetric unit of the unit cell in the crystal structures of I and II contains a copper complex with bidentate amine and a ligand coordinated by the azomethine nitrogen atom, the deprotonated phenolic oxygen atom, and the sulfur atom in the thiol form. The coordination polyhedron of the copper atom in compounds I and II is a distorted tetragonal pyramid. Obtained coordination compounds I and II exhibit antimicrobial and antifungal activities and have minimum inhibitory concentration and bactericidal concentration values in a range of 1.5-500 µg/mL. The study of the antioxidant activity shows that compounds I and II are less active than uncoordinated thiosemicarbazone H2L, but more active than trolox used in medical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Y. Yu, D. S. Kalinowski, Z. Kovacevic, A. Siafakas, P. Jansson, C. Stefani, D. Lovejoy, P. Sharpe, P. Bernhardt, and D. Richardson. J. Med. Chem., 2009, 52, 5271-5294. https://doi.org/10.1021/jm900552r

    Article  CAS  PubMed  Google Scholar 

  2. D. Klayman, J. Scovill, J. Bartosevich, and C. Mason. J. Med. Chem., 1979, 22, 1367. https://doi.org/10.1021/jm00197a017

    Article  CAS  Google Scholar 

  3. M. S. Villis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft. Am. J. Clin. Pathol., 2005, 123(1), 125-131. https://doi.org/10.1309/V6GVYW2QTYD5C5PJ

    Article  PubMed  Google Scholar 

  4. S. Archana and J. Ezhilarasi Rosaline. Int. J. Environ. Res. Chem. Environ., 2012, 2(4), 130-148.

  5. J. Patole, S. Padhye, S. Padhye, C. J. Newton, C. Anson, and A. K. Powell. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2004, 43, 1654-1658.

  6. S. Orysyk, G. Repich, V. Bon, V. Dyakonenko, V. Orysyk, Y. Zborovskii, and M. Vovk. Inorg. Chim. Acta, 2014, 423, 496. https://doi.org/10.1016/j.ica.2014.08.056

    Article  CAS  Google Scholar 

  7. E. Pahontu, V. Fala, A. Gulea, D. Poirier, V. Tapcov, and T. Rosu. Molecules, 2013, 18, 8812. https://doi.org/10.3390/molecules18088812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Bindu, M. R. P. Kurup, and T. R. Satyakeerty. Polyhedron, 1998, 18, 321. https://doi.org/10.1016/s0277-5387(98)00166-1

    Article  Google Scholar 

  9. V. Prisakar, V. Tsapkov, S. Buracheeva, M. Byrke, and A. Gulea. Pharm. Chem. J., 2005, 39, 313. https://doi.org/10.1007/s11094-005-0142-8

    Article  CAS  Google Scholar 

  10. A. Gulea, V. Graur, I. Ulchina, P. Bourosh, V. Smaglii, O. Garbuz, and V. Tsapkov. Russ. J. Gen. Chem., 2021, 91(1), 98-107. https://doi.org/10.1134/S1070363221010114

    Article  CAS  Google Scholar 

  11. S. I. Orysyk, V. V. Bon, O. O. Zholob, V. I. Pekhnyo, V. V. Orysyk, Y. L. Zborovskii, and M. V. Vovk. Polyhedron, 2013, 51, 211-221. https://doi.org/10.1016/j.poly.2012.12.021

    Article  CAS  Google Scholar 

  12. J. Fries and H. Getrost. Organic Reagents for Trace Analysis. Darmstadt: E. Merck, 1977.

  13. CrysAlisPro, 1.171.33.52. Oxford Diffraction, 2009.

  14. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  15. A. L. Spek. J. Appl. Crystallogr., 2003, 36, 7. https://doi.org/10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  16. A. Gulea, D. Poirier, J. Roy, V. Stavila, I. Bulimestru, V. Tapcov, and L Popovschi. J. Enzyme Inhib. Med. Chem., 2008, 23, 806. https://doi.org/10.1080/14756360701743002

    Article  CAS  PubMed  Google Scholar 

  17. G. Balan, O. Burduniuc, I. Usataia, V. Graur, Yu. Chumakov, P. Petrenko, V. Gudumac, A. Gulea, and E. Pahontu. Appl. Organomet. Chem., 2020, 34, e5423. https://doi.org/10.1002/aoc.5423

    Article  Google Scholar 

Download references

Funding

The work was performed within State Programs of the Republic of Moldova (projects 20.80009.5007.10 and 20.80009.5007.15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Graur.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 6, pp. 771-779.https://doi.org/10.26902/JSC_id92728

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, Y.M., Graur, V.O., Ulchina, Y.I. et al. CRYSTAL STRUCTURES OF [N′-(2- OXIDOBENZYLIDENE)-N-(PROP-2-EN-1-YL)- CARBAMOHYDRAZONOTHIOATO(2-)](1,10- PHENANTHROLINE)COPPER AND [N′-(2- OXIDOBENZYLIDENE)-N-(PROP-2-EN-1-YL)- CARBAMOHYDRAZONOTHIOATO(2-)](2,2′- BIPYRIDINE)COPPER HEMIHYDRATES. J Struct Chem 63, 905–913 (2022). https://doi.org/10.1134/S0022476622060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622060075

Keywords

Navigation