Skip to main content
Log in

QUANTUM-CHEMICAL INVESTIGATION OF THE COMPLEXATION OF TITANOCENE DICHLORIDE WITH C20 AND M+@C20 (M+ = Li, Na, K) CAGES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, the interaction of titanocene dichloride with C20 and M+@C20 (M+ = Li+, Na+, K+) cages is investigated using quantum mechanical methods. The M06-2X functional and the 6-311G(d,p) basis set are applied in these calculations. The bonding interactions between the C20 and M+@C20 clusters with the titanocene dichloride complex are examined through the energy decomposition analysis. The charge transfer between fragments is illustrated by the electrophilicity-based charge transfer (ECT). Also, the thermodynamic parameters of these interactions are calculated. Finally, the quantum theory of atoms in molecules analysis is used to assess BCP(C–Cl) within the C20 and M+@C20… titanocene dichloride complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. P. Koepf-Maier and H. Koepf. Chem. Rev., 1987, 87, 1137.

  2. P. Köpf-Maier, H. Köpf. In: Bioinorganic Chemistry. Structure and Bonding, vol. 70. Springer: Berlin, Heidelberg, 1988, 103.

  3. M. J. Clarke, F. Zhu, and D. R. Frasca. Chem. Rev., 1999, 99, 2511.

  4. M. L. McLaughlin, J. M. Cronan, T. R. Schaller, and R. D. Snelling. J. Am. Chem. Soc., 1990, 112, 8949.

  5. M. M. Harding, G. J. Harden, and L. D. Field. FEBS Lett., 1993, 322, 291.

  6. J. H. Murray and M. M. Harding. J. Med. Chem., 1994, 37, 1936.

  7. X. Chen and L. Zhou. J. Mol. Struct.: THEOCHEM, 2010, 940, 45.

  8. O. R. Allen, L. Croll, A. L. Gott, R. J. Knox, and P. C. McGowan. Organometals, 2004, 23, 288.

  9. J. R. Boyles, M. C. Baird, B. G. Campling, and N. Jain. J. Inorg. Biochem., 2011, 84, 159.

  10. P. W. Causey and M. C. Baird. Organometals, 2004, 4486.

  11. R. Teuber, R. Köppe, G. Linti, and M. Tacke. J. Organomet. Chem., 1997, 545–546, 105.

  12. S. Fox, J. P. Dunne, D. Dronskowski, D. Schmitz, and M. Tacke. Eur. J. Inorg. Chem., 2002, 3039.

  13. F.-J. K. Rehmann, L. P. Cuffe, O. Mendoza, D. K. Rai, N. Sweeney, K. Strohfeldt, W. M. Gallagher, and M. Tacke. Appl. Organomet. Chem., 2005, 19, 293.

  14. K. M. Kane, P. J. Shapiro, V. A. R. Cubbon, and A. L. Rheingold. Organometals, 1997, 16, 4567.

  15. M. Tacke, L. T. Allen, L. Cuffe, W. M. Gallagher, Y. Lou, O. Mendoza, H. Müller-Bunz, F.-J. K. Rehmann, and N. Sweeney. J. Organomet. Chem., 2004, 689, 2242.

  16. A. K. Friesen, Theor. Chem. Acc., 2019, 138, 54.

  17. E. J. Bylaska, P. R. Taylor, R. Kawai, and J. H. Weare. J. Phys. Chem. A, 1996, 100, 6966.

  18. J. C. Grossman, L. Mitas, and K. Raghavachari. Phys. Rev. Lett., 1995, 750, 3870.

  19. J. M. L. Martin, J. El-Yazal, and J.-P. François. Chem. Phys. Lett., 1996, 248, 345.

  20. S. Sokolova, A. Luchow, and J. B. Anderson. Chem. Phys. Lett., 2000, 323, 229.

  21. R. Taylor, E. Bylaska, J. H. Weare, and R. Kawai. Chem. Phys. Lett., 1995, 235, 558.

  22. Z. Wang, P. Day, and R. Pachte. Chem. Phys. Lett., 1996, 248, 121.

  23. C. Zhanga, W. Sun, and Z. Caob. J. Chem. Phys., 2007, 126, 144306.

  24. M. Z. Kassaee, F. Buazar, and M. Koohi. J. Mol. Struct.: THEOCHEM, 2010, 940, 19.

  25. R. Ghiasi and M. Z. Fashami. J. Theor. Comput. Chem., 2014, 13, 1450041-1.

  26. H. Alavi and R. Ghiasi. J. Struct. Chem., 2017, 58, 30.

  27. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. D. Gelmont, D. Olevano, and B. V. Issendorff. Nature, 2000, 407, 60.

  28. Z. Chen, T. Heine, H. Jiao, A. Hirsch, W. Thiel, and P. v. R. Schleyer. Chem. Eur. J., 2004, 10, 963.

  29. J. Luo, L. M. Peng, Z. Q. Xue, and J. L. Wu. J. Chem. Phys., 2004, 120, 7998.

  30. D. Zeng, H. Wang, B. Wang, and J. G. Hou. Appl. Phys. Lett., 2000, 77, 3595.

  31. D. S. Sabirov and E. Ōsawa. J. Chem. Inf. Model., 2015, 55, 1576.

  32. A. Yi-Peng, Y. Chuan-Lu, W. Mei-Shan, M. Xiao-Guang, and W. De-Hua. Chin. Phys. B, 2010, 19, 113402.

  33. M. Gonzalez, S. LujanKyle, and A. Beran. Comput. Theor. Chem., 2017, 1119, 32.

  34. M. Soleymani. J. Struct. Chem., 2019, 60, 524.

  35. F. Molani and M. Askari. J. Struct. Chem., 2017, 58, 657.

  36. A. A. Tukhbatullina, I. S. Shepelevich, and D. S. Sabirov. Fullerenes, Nanotubes, Carbon Nanostruct., 2017, 25, 71.

  37. F. R. Nikmaram. J. Struct. Chem., 2016, 57, 614.

  38. H. Ghanbari, B. G. Cousins, and A. M. Seifalian. Macromol. Rapid Commun., 2011, 32, 1032.

  39. E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M. H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R. J. Kalenczuk, T. Pichler, and S. R. P. Silva. Chem. Phys. Lett., 2006, 421, 1.

  40. A. N. Khlobystov, D. A. Britz, and G. A. D. Briggs. Acc. Chem. Res., 2005, 38, 901.

  41. K. Yanagi, Y. Miyata, and H. Kataura. Adv. Mater., 2006, 18, 437.

  42. S. A. Houston, N. S. Venkataramanan, A. A. Suvitha, and N. J. Wheate. Aust. J. Chem., 2016, 69, 1124.

  43. Z. Kazemi, R. Ghiasi, and S. Jamehbozorgi. J. Struct. Chem., 2018, 59.

  44. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Revision A.02. Gaussian: Wallingford CT, 2009.

  45. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.

  46. A. J. H. Wachters. J. Chem. Phys., 1970, 52, 1033.

  47. P. J. Hay. J. Chem. Phys., 1977, 66, 4377.

  48. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639.

  49. Y. Zhao and D. G. Truhla. J. Phys. Chem. A, 2006, 110, 5121.

  50. T. Lu and F. Chen. J. Mol. Graphics Modell., 2012, 38, 314.

  51. N. M. O′Boyle, A. L. Tenderholt, and K. M. Langer. J. Comput. Chem., 2008, 29, 839.

  52. T. A. Keith. AIMAll. Version 17.01.25. Overland Park KS: TK Gristmill Software, 2017. http://aim.tkgristmill.com/.

  53. T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580.

  54. T. Lu and F. Chen. J. Mol. Graphics Modell., 2012, 38, 314.

  55. J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. K. Chattaraj. J. Phys. Chem. A, 2007, 111, 1358.

  56. R. G. Pearson. J. Org. Chem., 1989, 54, 1430.

  57. R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512.

  58. P. Geerlings, F. D. Proft, and W. Langenaeker. Chem. Rev., 2003, 103, 1793.

  59. R. G. Parr, L. V. Szentpály, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922.

  60. R. G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules. Oxford University Press: Oxford, New York, 1989.

  61. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski. Chem. Rev., 2005, 105, 3513.

  62. R. F. W. Bader and C. F. Matta, F. Corte′s-Guzman. Organometallics, 2004, 23, 6253.

  63. X. Fradera, M. A. Austen, and R. F. W. Bader. J. Phys. Chem. A, 1999, 103, 304.

  64. R. F. W. Bader and D.-F. Fang. J. Chem. Theor. Comput., 2005, 1, 403.

  65. P. M. Mitrasinovic. Can. J. Chem., 2003, 81, 542.

  66. F. Lu, X. Li, Z. Sun, Y. Zeng, and L. Meng. Dalton Trans., 2015, 44, 14092.

  67. T. Lu and F. Chen. J. Phys. Chem. A, 2013, 117, 3100.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, R., Rahimi, M. & Ahmadi, R. QUANTUM-CHEMICAL INVESTIGATION OF THE COMPLEXATION OF TITANOCENE DICHLORIDE WITH C20 AND M+@C20 (M+ = Li, Na, K) CAGES. J Struct Chem 61, 1681–1690 (2020). https://doi.org/10.1134/S0022476620110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620110025

Keywords

Navigation