Skip to main content
Log in

Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Antioxidants comprise a group of molecular systems that removes oxidizing agents potentially damaging biological and chemical environments. Since the oxidizing agents give rise to chemical reactions that can produce free radicals, which in turn lead the way to chain reactions that may damage cells, the removal of such oxidizing agents is inevitable in the living systems. Electronic structure calculations based on quantum chemistry provides a relatively good prediction of the molecular structure of biological antioxidants and it can be utilized to calculate molecular parameters, such as electron affinity, ionization potential, electronegativity, chemical potential, hardness, electrophilicity, and Fukui indices. From these a theoretical prediction is possible about the performance of an antioxidant. In this analysis one of the natural antioxidants leucocyanidin (C15H14O7) is selected and its performance is theoretically evaluated using different model chemistries. The chemical computations assert that leucocyanidin has an intrinsic nature of donating electrons and hence it can be regarded as a natural antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamamoto and R. B. Gaynor. J. Clin. Invest., 2001, 107, 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. H. Cazarolli, L. Zanatta, E. H. Alberton, M. S. Figueiredo, P. Folador, R. G. Damazio, M. G. Pizzolatti, and F. R. Silva. Mini Rev. Med. Chem., 2008, 8, 1429.

    Article  CAS  PubMed  Google Scholar 

  3. T. P. Cushnie and A. J. Lamb. Int. J. Antimicrob. Agents, 2011, 38, 99.

    Article  CAS  PubMed  Google Scholar 

  4. S. Manner, M. Skogman, D. Goeres, P. Vuorela, and A. Fallarero. Int. J. Mol. Sci., 2013, 14, 19434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. P. Cushnie and A. J. Lamb. Int. J. Antimicrob. Agents, 2005, 26, 343.

    Article  CAS  PubMed  Google Scholar 

  6. M. Friedman. Mol. Nutr. Food Res., 2007, 51, 116.

    Article  CAS  PubMed  Google Scholar 

  7. R. R. de Sousa, K. C. Queiroz, A. C. Souza, S. A. Gurgueira, A. C. Augusto, M. A. Miranda, M. P. Peppelenbosch, C. V. Ferreira, and H. Aoyama. J. Enzyme Inhib. Med. Chem., 2007, 22, 439.

    Article  CAS  PubMed  Google Scholar 

  8. M. Schuier, H. Sies, B. Illek, and H. Fischer. J. Nutr., 2005, 135, 2320.

    Article  CAS  PubMed  Google Scholar 

  9. M. Esselen, J. Fritz, M. Hutter, and D. Marko. Chem. Res. Toxicol., 2009, 22, 554.

    Article  CAS  PubMed  Google Scholar 

  10. O. J. Bandele, S. J. Clawson, and N. Osheroff. Chem. Res. Toxicol., 2008, 21, 1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. B. Doorn-Khosrovani, J. Janssen, L. M. Maas, R. W. Godschalk, J. G. Nijhuis, and F. J. van Schooten. Carcinogenesis, 2007, 28, 1703.

    Article  CAS  Google Scholar 

  12. Y. Romero and A. Martínez. J. Mol. Model., 2015, 21, 220.

    Article  CAS  PubMed  Google Scholar 

  13. J. S. Wright, E. R. Johnson, and G. A. DiLabio. J. Am. Chem. Soc., 2001, 123, 1173.

    Article  CAS  PubMed  Google Scholar 

  14. V. Stepanć, K. G. Trošelj, B. Lučić, Z. Markoviç, and D. Amić. Food Chem., 2013, 141, 1562.

    Article  CAS  Google Scholar 

  15. M. Toscano and N. Russo. Comput. Theor. Chem., 2016, 1077, 119.

    Article  CAS  Google Scholar 

  16. F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos. Biotech. J., 2007, 2, 1214.

    Article  CAS  Google Scholar 

  17. Leucocyanidin on liberherbarum.com.

  18. W. Heller, L. Britsch, G. Forkmann, and H. Grisebach. Planta, 1985, 163, 191.

    Article  CAS  PubMed  Google Scholar 

  19. L. J. Porter, R. Y. Wong, and B. G. Chan. J. Chem. Soc. Perkin Trans. I, 1985, 0, 1413.

    Article  CAS  Google Scholar 

  20. B. H. Havsteen. Pharm. Therap., 2002, 96, 67.

    Article  CAS  Google Scholar 

  21. A. Seyoum, K. Asres, and F. K. El-Fiky. Phytochem., 2006, 67, 2058.

    Article  CAS  Google Scholar 

  22. J. Hernandez, F. M. Goycoolea, J. Quintero, A. Acosta, M. Castaneda, Z. Dominguez, R. Robles, L. Vazquez-Moreno, E. F. Velazquez, H. Astiazaran, E. Lugo, and C. Velazquez. Planta Med., 2007, 73, 1469.

    Article  CAS  PubMed  Google Scholar 

  23. D. Valencia, E. Alday, R. Robles-Zepeda, A. Garibay-Escobar, J. C. Galvez-Ruiz, M. Salas-Reyes, M. Jimenez-Estrada, E. Velazquez-Contreras, J. Hernandez, and C. Velazquez. Food Chem., 2012, 131, 645.

    Article  CAS  Google Scholar 

  24. M. Neacsu, P. C. Eklund, R. E. Sjoholm, S. P. Pietarinen, M. O. Ahotupa, and B. R. Holmbom. Holz. Roh- Werkst., 2007, 65, 1.

    Article  CAS  Google Scholar 

  25. J. Zhao, Y. Li, X. F. Xue, and Y. Cai. Apicult. China, 2005, 56, 9.

    Google Scholar 

  26. S. Li-Li, C. Bain-Nian, G. Mei, Z. Heng-Ai, L. Yan-Jin, W. Li, and D. Guan-Hua. Life Sci., 2011, 88, 521.

    Article  CAS  Google Scholar 

  27. R. Liu, M. Gao, Y. Zhi-Hong, and D. Guan-Hua. Brain Res., 2008, 1216, 104.

    Article  CAS  PubMed  Google Scholar 

  28. R. D. Vargas-Sanchez, A. M. Mendoza-Wilson, R. R. Balandran-Quintana, G. R. Torrescano-Urrutia, and A. Sanchez-Escalante. Comput. Theor. Chem., 2015, 1058, 21.

    Article  CAS  Google Scholar 

  29. R. A. Laskar, I. Sk, N. Roy, and N. A. Begum. Food Chem., 2010, 122, 233.

    Article  CAS  Google Scholar 

  30. S. A. Payan-Gomez, N. Flores-Holguin, A. Perez-Hernandez, M. Pinon-Miramontes, and D. Glossman-Mitnik. Chem. Cent. J., 2010, 4, 1.

    Article  CAS  Google Scholar 

  31. A. M. Mendoza-Wilson and D. Glossman-Mitnik. J. Mol. Struct. THEOCHEM, 2006, 761, 97.

    Article  CAS  Google Scholar 

  32. A. Mahmood, M. Saqib, M. Ali, M. I. Abdullah, and B. Khalid. Can. J. Chem., 2013, 91, 126.

    Article  CAS  Google Scholar 

  33. M. Saquib, S. Iqbal, S. Naeem, and A. Mahmood. Pak. J. Pharm. Sci., 2013, 26, 1209.

    Google Scholar 

  34. A. Mohajeri and S. S. Asemani. J. Mol. Struct., 2009, 930, 15.

    Article  CAS  Google Scholar 

  35. Y. Chen, H. Xiao, J. Zheng, and G. Liang. PLoS One, 2015, 10, e0121276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Cao, W. X. Cheng, C. Li, X. L. Pan, X. G. Xie, and T. H. Li. J. Mol. Struc. THEOCHEM, 2005, 719, 177.

    Article  CAS  Google Scholar 

  37. J. Zhang, Y. Xiong, B. Peng, H. Gao, and Z. Zhou. Comput. Theor. Chem., 2011, 963, 148.

    Article  CAS  Google Scholar 

  38. Y. Zhao, N. E. Schultz, and D. G. Truhlar. J. Chem. Phys., 2005, 123, 161103.

    Article  CAS  PubMed  Google Scholar 

  39. Y. Zhao, N. E. Schultz, and D. G. Truhlar. J. Chem. Theor. Comput., 2006, 2, 364.

    Article  CAS  Google Scholar 

  40. Y. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120, 215.

    Article  CAS  Google Scholar 

  41. Y. Zhao and D. G. Truhlar. J. Phys. Chem., 2006, 110, 5121.

    Article  CAS  Google Scholar 

  42. Y. Zhao and D. G. Truhlar. J. Phys. Chem. A, 2006, 110, 13126.

    Article  CAS  PubMed  Google Scholar 

  43. R. Peverati, D.G. Truhlar. J. Phy. Chem. Lett., 2011, 2, 2810.

    Article  CAS  Google Scholar 

  44. Avogadro: an open-source molecular builder and visualization tool, Version 1. http://avogadro.openmolecules.net.

  45. D. H. Marcus, E. C. Donald, C. L. David, V. Tim, Z. Eva, and R. H. Geoffrey. J. Cheminform., 2012, 4, 17.

    Article  CAS  Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  47. R. G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989.

    Google Scholar 

  48. P. Geerlings, F. De Proft, and W. Langenaeker. Chem. Rev., 2003, 103, 1793.

    Article  CAS  Google Scholar 

  49. J. B. Foresman and A. Frisch. Exploring Chemistry with Electronic Structure Methods. Second Edition. Gaussian, Pittsburgh, PA, 1996.

    Google Scholar 

  50. P. G. Pietta. J. Nat. Prod., 2000, 63, 1035.

    Article  CAS  PubMed  Google Scholar 

  51. R. G. Parr, L. V. Szentpaly, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922.

    Article  CAS  Google Scholar 

  52. E. G. Lewars. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer, 2016.

    Book  Google Scholar 

  53. J. Zhang, J. Tolchard, K. Bathany, B. L. d’Estaintot, and J. Chaudiere. J. Agric. Food Chem., 2018, 66(1), 351–358.

    Article  CAS  PubMed  Google Scholar 

  54. M. Leopoldini, N. Russo, and M. Toscano. Food Chem., 2011, 1251, 288.

    Article  CAS  Google Scholar 

  55. K. Hassanzadeh, K. Akhtari, H. Hassanzadeh, S. A. Zarei, N. Fakhraei, and K. Hassanzadeh. Food Chem., 2014, 164, 251.

    Article  CAS  PubMed  Google Scholar 

  56. K. Kondo, M. Kurihara, N. Miyata, T. Suzuki, and M. Toyoda. Arch. Biochem. Biophys., 1999, 362, 79.

    Article  CAS  PubMed  Google Scholar 

  57. R. G. Pearson. J. Chem. Sci., 2005, 177, 369.

    Article  Google Scholar 

  58. C. Miao, D. Yu, L. Huang, S. Zhang, L. Yu, and P. Zhang. Ind. Eng. Chem. Res., 2016, 55, 1819.

    Article  CAS  Google Scholar 

  59. S. Antonczak. J. Mol. Struct., 2008, 856, 38.

    Article  CAS  Google Scholar 

  60. Z. D. Petrović, J. Đorović, D. Simijonović, V. P. Petrović, and Z. Marković. RSC Adv., 2015, 5, 24094.

    Article  CAS  Google Scholar 

  61. W. Yang and W. J. Mortier. J. Am. Chem. Soc., 1986, 108, 5708.

    Article  CAS  PubMed  Google Scholar 

  62. D. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: Wiley, 2001.

    Book  Google Scholar 

  63. R. L. Prior, X. Wu, and K. Schaich. J. Agric. Food Chem., 2005, 53, 4290.

    Article  CAS  Google Scholar 

  64. J. S. Wright, E. R. Johnson, and G. A. DiLabio. J. Am. Chem. Soc., 2001, 123, 1173.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Augustine.

Additional information

Zhurnal Strukturnoi Khimii, Vol. 60, No. 2, pp. 211–221, February, 2019.

Electronic supplementary material

10947_2019_1125_MOESM1_ESM.pdf

Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, C. Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations. J Struct Chem 60, 198–209 (2019). https://doi.org/10.1134/S0022476619020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619020045

Keywords

Navigation