Skip to main content
Log in

Structure–antioxidant activity (oxygen radical absorbance capacity) relationships of phenolic compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Antioxidant capacity is the extent to which a compound can eliminate reactive oxygen species, and in vitro methods for its chemical evaluation have been proposed. Among these methods, the oxygen radical absorbance capacity (ORAC) assay comes close to the oxidation reaction in the living body because it generates radical species that mimic the lipid peroxyl radical involved in the peroxidation reaction of biological components and react in a phosphate buffer. In this study, PM7, a semi-empirical molecular orbital method, was used to calculate the thermodynamic properties (bond dissociation enthalpy, ionisation potential and proton affinity) associated with ORAC. We also applied the clusterwise linear regression analysis as a statistical method for grouping the antioxidants by structure. By analysing the data for antioxidants, the trend in the hydrophilic ORAC values was determined using the calculated structures and bond dissociation enthalpies of the groups classified according to the presence or absence of oxygen functional groups in the ortho position of phenol. Further studies of indicators other than bond dissociation enthalpy are needed to predict the ORAC of other antioxidants such as flavonoids and indoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 3:21–33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

    Article  CAS  PubMed  Google Scholar 

  2. Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230. https://doi.org/10.1021/ar0682029

    Article  CAS  PubMed  Google Scholar 

  3. Galian RE, Litwinienko G, Pérez-Prieto J, Ingold KU (2007) Kinetic solvent effects on the reaction of an aromatic ketone π, π* triplet with phenol. Rate-retarding and rate-accelerating effects of hydrogen-bond acceptor solvents. J Am Chem Soc 129:9280–9281. https://doi.org/10.1021/ja071716y

    Article  CAS  PubMed  Google Scholar 

  4. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896. https://doi.org/10.1021/jo049254j

    Article  CAS  PubMed  Google Scholar 

  5. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Methods for testing antioxidant activity. Analyst 127:183–198. https://doi.org/10.1039/b009171p

    Article  CAS  PubMed  Google Scholar 

  6. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856. https://doi.org/10.1021/jf030723c

    Article  CAS  PubMed  Google Scholar 

  7. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815–1821. https://doi.org/10.1021/jf0113732

    Article  CAS  PubMed  Google Scholar 

  8. Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biol Med 14:303–311. https://doi.org/10.1016/0891-5849(93)90027-R

    Article  CAS  Google Scholar 

  9. Watanabe J, Oki T, Takebayashi J, Yamasaki K, Takano-Ishikawa Y, Hino A, Yasui A (2012) Method validation by interlaboratory studies of improved hydrophilic oxygen radical absorbance capacity methods for the determination of antioxidant capacities of antioxidant solutions and food extracts. Anal Sci 28:159. https://doi.org/10.2116/analsci.28.159

    Article  CAS  PubMed  Google Scholar 

  10. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill HD, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279. https://doi.org/10.1021/jf0262256

    Article  CAS  PubMed  Google Scholar 

  11. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302. https://doi.org/10.1021/jf0502698

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Liu Y, Chu L, Wei Y, Wang D, Cai S, Zhou F, Ji B (2013) Relationship between the structures of flavonoids and oxygen radical absorbance capacity values: a quantum chemical analysis. J Phys Chem A 117:1784–1794. https://doi.org/10.1021/jp307746c

    Article  CAS  PubMed  Google Scholar 

  13. Olszowy M (2019) What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem 144:135–143. https://doi.org/10.1016/j.plaphy.2019.09.039

    Article  CAS  Google Scholar 

  14. Villaño D, Fernández-Pachón MS, Troncoso AM, García-Parrilla MC (2005) Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal Chim Acta 538:391–398. https://doi.org/10.1016/j.aca.2005.02.016

    Article  CAS  Google Scholar 

  15. Rodriguez-Naranjo MI, Moyá ML, Cantos-Villar E, García-Parrilla MC (2012) Comparative evaluation of the antioxidant activity of melatonin and related indoles. J Food Compos Anal 28:16–22. https://doi.org/10.1016/j.jfca.2012.07.001

    Article  CAS  Google Scholar 

  16. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  17. Reiter RJ, Tan D-X, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50:1129–1146. https://doi.org/10.18388/abp.2003_3637

  18. Ordoudi SA, Tsimidou MZ, Vafiadis AP, Bakalbassis EG (2006) Structure-DPPH scavenging activity relationships: parallel study of catechol and guaiacol acid derivatives. J Agric Food Chem 54:5763–5768. https://doi.org/10.1021/jf060132x

    Article  CAS  PubMed  Google Scholar 

  19. Shen L, Zhang H-Y, Ji H-F (2008) A thermodynamic investigation of DPPH radical-scavenging mechanisms of folates. J Mol Struct: THEOCHEM 856:119–123. https://doi.org/10.1016/j.theochem.2008.01.023

    Article  CAS  Google Scholar 

  20. Ji H-F, Tang G-Y, Zhang H-Y (2005) Theoretical elucidation of DPPH radical-scavenging activity difference of antioxidant xanthones. QSAR Comb Sci 24:826–830. https://doi.org/10.1002/qsar.200430917

    Article  CAS  Google Scholar 

  21. Slavova-Kazakova AK, Angelova SE, Veprintsev TL, Denev P, Fabbri D, Dettori MA, Kratchanova M, Naumov VV, Trofimov AV, Vasilév RF, Delogu G, Kancheva VD (2015) Antioxidant potential of curcumin-related compounds studied by chemiluminescence kinetics, chain-breaking efficiencies, scavenging activity (ORAC) and DFT calculations. Beilstein J Org Chem 11:1398–1411. https://doi.org/10.3762/bjoc.11.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Žuvela P, David J, Yang X, Huang D, Wong MW (2019) Non-linear quantitative structure-activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int J Mol Sci 20:2328. https://doi.org/10.3390/ijms20092328

    Article  CAS  PubMed Central  Google Scholar 

  23. Späth H (1992) Mathematical algorithms for linear regression. Academic Press, San Diego

    Google Scholar 

  24. Späth H (1979) Algorithm 39 Clusterwise linear regression. Computing 22:367–373. https://doi.org/10.1007/BF02265317

    Article  Google Scholar 

  25. Späth H (1982) A fast algorithm for clusterwise linear regression. Computing 29:175–181. https://doi.org/10.1007/BF02249940

    Article  Google Scholar 

  26. Vicari D, Vichi M (2013) Multivariate linear regression for heterogeneous data. J Appl Stat 40:1209–1230. https://doi.org/10.1080/02664763.2013.784896

    Article  Google Scholar 

  27. Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47:2462–2474. https://doi.org/10.1021/ci6005646

    Article  CAS  PubMed  Google Scholar 

  28. Stewart JJP (1990) MOPAC: a semiempirical molecular orbital program. J Comput-Aided Mol Des 4:1–103. https://doi.org/10.1007/BF00128336

    Article  PubMed  Google Scholar 

  29. Bartolome B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC−fluorescein). Assay J Agric Food Chem 52:48–54. https://doi.org/10.1021/jf0305231

    Article  CAS  PubMed  Google Scholar 

  30. Naguib YM (2000) A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants. Anal Biochem 284:93–98. https://doi.org/10.1006/abio.2000.4691

    Article  CAS  PubMed  Google Scholar 

  31. Řezáč J, Fanfrlík J, Salahub D, Hobza P (2009) Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. J Chem Theory Comput 5:1749–1760. https://doi.org/10.1021/ct9000922

    Article  CAS  PubMed  Google Scholar 

  32. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  33. Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98:6420–6424. https://doi.org/10.1021/j100076a029

    Article  CAS  Google Scholar 

  34. Okawa M, Kinjo J, Nohara T, Ono M (2001) DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24:1202–1205. https://doi.org/10.1248/bpb.24.1202

    Article  CAS  PubMed  Google Scholar 

  35. Kondo K, Kurihara M, Fukuhara K, Tanaka T, Suzuki T, Miyata N, Toyoda M (2000) Conversion of procyanidin B-type (catechin dimer) to A-type: evidence for abstraction of C-2 hydrogen in catechin during radical oxidation. Tetrahedron Lett 41:485–488. https://doi.org/10.1016/S0040-4039(99)02097-3

    Article  CAS  Google Scholar 

  36. Saito T, Kambara H, Takano Y (2020) Quantitative assessment of reparameterized PM6 (rPM6) for hydrogen abstraction reactions. Mol Phys 118:14. https://doi.org/10.1080/00268976.2019.1700313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for the English language editing services.

Funding

The calculations have been carried out using resources provided by the affiliations of the authors (Yokohama National University).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the project, and the main contributions were as follows: conceptualization, S.S., M. K. and H.G.; methodology, S.S. and Y.K.; validation, S.S. and Y.K.; investigation, S.S. and Y.K.; writing—original draft preparation, S.S.; writing—review and editing, H.G.; visualisation, S.S., Y. K.; supervision, H.G., M. K.; project administration, H.G.

Corresponding author

Correspondence to Hiroaki Gotoh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 542 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, S., Kawakami, Y., Kuroki, M. et al. Structure–antioxidant activity (oxygen radical absorbance capacity) relationships of phenolic compounds. Struct Chem 33, 1055–1062 (2022). https://doi.org/10.1007/s11224-022-01920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01920-4

Keywords

Navigation