Skip to main content
Log in

Molecular Adducts of Isoniazid: Crystal Structure, Electronic Properties, and Hirshfeld Surface Analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Three molecular adducts of the antituberculosis drug isoniazid (INH) are synthesized with γ-resorcylic acid (γRA), phloroglucinol (PG), and gallic acid (GA). The new solid phases are preliminarily characterized by the thermal analysis (DSC/TGA) and powder X-ray diffraction. The formation of new solid phases is confirmed by single crystal X-ray diffraction, infrared (FT-IR) and Raman spectroscopy. All three new solid crystalline forms are stabilized by various hydrogen bonding interactions such as N+···H–O, N···H–O, O···H–O, and ππ stacking. The FT-IR analysis puts forward that the solid form of INH1 is a salt whereas the INH2 and INH3 molecular complexes are cocrystals. We have also investigated the density of states (DOS), band structure, and atomic orbit projected density of state (PDOS) of title compounds by adopting the density functional theory (DFT) technique in the local density approximation (LDA). The electronic structure calculations show that energy states are delocalized in the k-space due the hydrogen and covalent bonds in the crystals. The frontier molecular orbital (FMO) analysis reveals that charge transfer takes place within the compounds. The Hirshfeld analysis shows that H–H and N⋯H–O hydrogen bonding interactions are dominant in all three molecular adducts of INH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Desiraju. Acc. Chem. Res., 2002, 35,565.

    Article  CAS  PubMed  Google Scholar 

  2. B. Moulton and M. J. Zaworotko. Chem. Rev., 2001, 101, 1629–1658.

    Article  CAS  PubMed  Google Scholar 

  3. L. MacGillivray. CrystEngComm., 2004, 6, 77/78.

    Article  CAS  Google Scholar 

  4. C. B. Aakeroy and D. J. Salmon. CrystEngComm, 2005, 7, 439–448.

    Article  CAS  Google Scholar 

  5. M. C. Etter. Acc. Chem. Res., 1990, 23, 120–126.

    Article  CAS  Google Scholar 

  6. P. Sanphui, G. Bolla, and A. Nangia. Cryst. Growth Des., 2012, 12(4), 2023–2036.

    Article  CAS  Google Scholar 

  7. F. T. Martins, R. Bonfilio, M. B. D. Araujo, and J. Ellena. J. Pharm. Sci., 2012, 101, 2143–2154.

    Article  CAS  PubMed  Google Scholar 

  8. A. T. M. Serajuddin. Adv. Drug Delivery Rev., 2007, 59, 603–616.

    Article  CAS  Google Scholar 

  9. A. Lemmerer. CrystEngComm, 2012, 14, 2465–2478.

    Article  CAS  Google Scholar 

  10. Ö. Almarsson and M. J. Zaworotko. Chem. Commun., 2004, 0, 1889–1896.

    Article  CAS  Google Scholar 

  11. N. Blagden, M. de Matas, P. T. Gavan, and P. York. Adv. Drug Delivery Rev., 2007, 59, 617–630.

    Article  CAS  Google Scholar 

  12. P. H. Stahl and C. G. Wermuth. Ed. Verlag Helvetica Chimica Acta, Zurich, 2002.

    Google Scholar 

  13. R. C. Rowe, P. J. Sheskey, and S. C. Owen. Ed. APhA Publications, 5th edn, 2005.

    Google Scholar 

  14. USP DI®, vol. I, 15th ed. 1627, 1995.

  15. A. Lemmerer, J. Bernstein, and V. Kahlenberg. CrystEngComm, 2010, 12, 2856–2864.

    Article  CAS  Google Scholar 

  16. P. Grobely, A. Mukherjee, and G. R. Desiraju. CrystEngComm, 2011, 13, 4358–4364.

    Article  CAS  Google Scholar 

  17. N. Ravikumar, G. Gopikrishna, and K. Anand Solomon. J. Mol. Struct., 2013, 1033, 272–279.

    Article  CAS  Google Scholar 

  18. A. Lemmerer, J. Bernstein, and V. Kahlenberg. J. Chem. Crystallogr., 2011, 41, 991–997.

    Article  CAS  Google Scholar 

  19. S. Cherukuveda and A. Nangia. CrystEngComm, 2012, 14, 2579–2588.

    Article  CAS  Google Scholar 

  20. J. G. da Silva Filho, V. N. Freire, E. W. S. Caetano, L. O. Ladeira, U. L. Fulco, and E. L. Albuquerque. Chem. Phys. Lett., 2013, 587, 20–24.

    Article  CAS  Google Scholar 

  21. X.-G. Meng, Y.-L. Xiao, H. Zhang, and C.-S. Zhou. Acta. Crystallogr., Sect. C, 2008, 64, o261–o263.

    Article  CAS  Google Scholar 

  22. I. Sarcevica, L. Orola, M. V. Veidis, A. Podjava, and S. Belyakov. Cryst. Growth Des., 2013, 13, 1082–1090.

    Article  CAS  Google Scholar 

  23. N. Saikia, S. K. Pati, and R. C. Deka. Appl. Nanosci., 2012, 2, 389–400.

    Article  CAS  Google Scholar 

  24. B. Barbielini and A. Shukla. Phys. Rev. B, 2002, 66, 235101.

    Article  CAS  Google Scholar 

  25. Bruker APEX2, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.

  26. A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi. J. Appl. Crystallogr., 1993, 26, 343–350.

    Article  Google Scholar 

  27. G. M. Sheldrick. Acta Crystallogr., 2008, A64, 112–122.

    Article  CAS  Google Scholar 

  28. M. Segall, P. Linda, M. Probert, C. Pickard, C. Hasnip, S. Clark, and M. Payne. Materials Studio CASTEP, version 2.2. AccelrysSan Diego, CA, 2002.

    Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  30. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Crystal Explorer, version 1.5, University of Western Australia: Perth, Australia, 2007.

    Google Scholar 

  31. F. P. A. Fabbiani, L. T. Byrne, J. J. McKinnon, and M. A. Spackman. CrystEngComm, 2007, 9, 728–731.

    Article  CAS  Google Scholar 

  32. A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman, and C. C. Wilson. CrystEngComm, 2007, 9, 648–652.

    Article  CAS  Google Scholar 

  33. M. A. Elbagerma, H. G. M. Edwards, T. Munshi, M. D. Hargreaves, P. Matousek, and I. J. Scowen. Cryst. Growth Des., 2010, 10, 2360–2371.

    Article  CAS  Google Scholar 

  34. S. L. Childs, G. P. Stahly, and A. Park. Mol. Pharmaceutics, 2007, 4, 323–338.

    Article  CAS  Google Scholar 

  35. R. M. Silverstein and F. X. Webster. Spectrometric identification of organic compounds 6th edn. Wiley, New York, 1998.

    Google Scholar 

  36. E. Spinner. J. Chem. Soc., 1962, 10, 3119.

    Article  Google Scholar 

  37. P. Bassignana, C. Cogrossi, and M. Gaudino. Spectrochim. Acta, 1963, 19, 1885–1897.

    Article  CAS  Google Scholar 

  38. T. Thakuria and A. Nangia. CrystEngComm, 2011, 13, 1759–1764.

    Article  CAS  Google Scholar 

  39. J. F. Remenar, M. L. Peterson, P. W. Stephens, Z. Zhang, Y. Zimenkov, and M. B. Hickey. Mol. Pharmaceutics, 2007, 4, 386–400.

    Article  CAS  Google Scholar 

  40. T. A. Koopmans. Atoms Physica, 1934, 1, 104–113.

    Google Scholar 

  41. P. Sjoberg and P. Politzer. J. Phys. Chem., 1990, 94, 3959–3961.

    Article  CAS  Google Scholar 

  42. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Chem. Commun., 2007, 12, 3814–3816.

    Article  CAS  Google Scholar 

  43. M. A. Spackman and D. Jayatilaka. CrystEngComm, 2009, 11, 19–32.

    Article  CAS  Google Scholar 

  44. M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. CrystEngComm, 2011, 13, 1804–1813.

    Article  CAS  Google Scholar 

  45. M. A. Spackman, J. J. McKinnon, and D. Jayatilaka. CrystEngComm, 2008, 10, 377–388.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamalakaran.

Additional information

Original Russian Text © 2018 A. S. Kamalakaran.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 7, pp. 1580–1595, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalakaran, A.S. Molecular Adducts of Isoniazid: Crystal Structure, Electronic Properties, and Hirshfeld Surface Analysis. J Struct Chem 59, 1518–1533 (2018). https://doi.org/10.1134/S002247661807003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661807003X

Keywords

Navigation