Skip to main content
Log in

A DFT study of inclusion complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Complexation behavior of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril are investigated with B3LYP, M06-2X, and WB97x-D based density functional theories with 6-31G and 6-31G++ basis set in vacuum and in water. Complexation, interaction and deformation energies, geometries, chemical reactivity, thermodynamic parameters have been investigated. The obtained results clearly indicate that the formed complexes are energetically favored. The most reactive sites in the complexes were identified by molecular electrostatic potential map. Finally, charge transfer between the donor and acceptor orbital of pyrazinamide, isoniazid and cucurbit[7]uril plays an important role to stabilize the inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    Article  CAS  Google Scholar 

  2. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: synthesis, isolation, characterization, and X-ray crystal structure of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  3. Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)

    Article  CAS  Google Scholar 

  4. A.L. Koner, W.M. Nau, Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem. 19, 55–66 (2007)

    Article  CAS  Google Scholar 

  5. Liu, S., Ruspic, C., Mukhopadhyay, P., Chakrabarti, S., Zavalij, P.Y., Isaacs, L.: The cucurbit[n]uril family: prime components for self-sorting systems. J. Am. Chem. Soc. 127, 15959–15967 (2005)

    Article  CAS  Google Scholar 

  6. Suvitha, A., Venkataramanan, S., Mizuseki, H., Kawazoe, Y., Ohuchi, N.: Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils n = 5 to 8. J. Incl. Phenom. Macrocycl. Chem. 66, 213–218 (2010)

    Article  CAS  Google Scholar 

  7. Ge, J.Y., Xue, S.F., Zhu, Q.J., Tao, Z., Zhang, J.X.: Interaction of cucurbit [n = 6–8]urils and Benzimidazole derivatives. J. Incl. Phenom. Macrocycl. Chem. 58, 63–69 (2007)

    Article  CAS  Google Scholar 

  8. Madi, F., Bounefla, F., Kirati, I., Nouar, L., Khatmi, D.E.: TD-DFT calculations of visible spectra and structural studies of carbendazim inclusion complex with cucurbit[7]uril. J. Taiwan Inst. Chem. Eng. 50, 37–42 (2015)

    Article  Google Scholar 

  9. Mahdavifar, Z., Samiee, S.: Theoretical investigation of inclusion complex. Formation of Gold (III)–Dimethyl dithiocarbamate anticancer agents with cucurbit [n = 5, 6] urils. Arab. J. Chem. 7, 425–435 (2014)

    Article  CAS  Google Scholar 

  10. Merabet, N., Madi, F., Nouar, L., Haiahem, S., Khatmi, D.E.: Density functional study of inclusion complex of Albendazole/cucurbit[7]uril: structure, electronic properties, NBO, GIAO and TD-DFT analysis. J. Mol. Liq. 211, 40–47 (2015)

    Article  Google Scholar 

  11. Li, Y.P., Wu, H., Du, L.M., Chin: Study on the inclusion interactions of berberine hydrochloride and cucurbit[7] by spectrofluorimetry. Chem. Lett. 20, 322–325 (2009)

    Article  CAS  Google Scholar 

  12. Megyesi, M., Biczok, L., Jablonkai, I.: Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril. J. Phys. Chem. 112, 3410–3416 (2008)

    Article  CAS  Google Scholar 

  13. LiyunMaa, Si-Min Liub, Lin Yaoa, Li Xua: Preparation and chromatographic performance evaluation of cucurbit[7]uril immobilized silica. J. Chromatogr. A 1376, 64–73 (2015)

    Article  Google Scholar 

  14. Ruibing Wang, Ian W. Wyman, Shihao Wang, Donal H. Macartney: Encapsulation of a β-carboline in cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 64, 233–237 (2009)

    Article  CAS  Google Scholar 

  15. Del Pozo, M., Hernández, L., Quintana, C.: A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. Talanta 81, 1542–1546 (2010)

    Article  CAS  Google Scholar 

  16. Prashanthi Suthari, Hemant Kumar, P., Siva Doddi, Prakriti Ranjan Bangal: Investigation of supramolecular stoichiometry and dynamic for inclusion complex of water soluble porphyrin with cucurbit[7]uril by fluorescence correlation spectroscopy. J. Photochem. Photobiol. A 284, 27–35 (2014)

    Article  CAS  Google Scholar 

  17. Shewale, M.N., Lande, D.N., Gejji, S.P.: Encapsulation of benzimidazole derivatives within cucurbit[7]uril: density functional investigations. J. Mol. Liq. 216, 309–317 (2016)

    Article  CAS  Google Scholar 

  18. Rao, S.S., Lande, D.N., Gejji, S.P.: Density functional theory investigations on binding and spectral features of complexes of ferrocenyl derivatives with cucurbit[7]uril. J. Mol. Liq. 216, 298–308 (2016)

    Article  CAS  Google Scholar 

  19. Zumla, A., George, A., Sharma, V., Herbert, R.H., Baroness Masham of Ilton, Oxley, A., Oliver, M.: The WHO 2014 global tuberculosis report—further to go. Lancet Glob. Health 3, e10–e12 (2015)

    Article  Google Scholar 

  20. Blumberg, H.M., Burman, W.J., Chaisson, R.E., Daley, C.L., Etkind, S.C., Friedman, L.N., Fujiwara, P., Grzemska, M., Hopewell, P.C., Iseman, M.D., Jasmer, R.M., Koppaka, V., Menzies, R.I., O'Brien, R.J., Reves, R.R., Reichman, L.B., Simone, P.M., Starke, J.R., Vernon A.A.: American thoracic society/Centers for disease control and prevention/Infectious diseases society of America: treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 167, 603–662 (2003)

    Article  Google Scholar 

  21. Middlebrook, G., Cohn, M.L.: Some observations on the pathogenicity of isoniazidresistant variants of tubercle bacilli. Science 118, 297–299 (1953)

    Article  CAS  Google Scholar 

  22. American Thoracic Society: Medical Section of the American Lung Association: Treatment of tuberculosis and tuberculosis infection in adults and children. Am. Rev. Respir. Dis. 134, 355–363 (1986)

    Google Scholar 

  23. Wheate, N.J., Vora, V., Anthony, N.G., McInnes, F.J.: Host–guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 68, 359–367 (2010)

    Article  CAS  Google Scholar 

  24. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  25. Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  26. Segall, M., Lindan, P., Probert, M., Pickard, C., Hasnip, P., Clark, S., Payne, M.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002)

    Article  CAS  Google Scholar 

  27. Liu, W., Karpov, E., Zhang, S., Park, H.: An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578 (2004)

    Article  Google Scholar 

  28. Martin, R.: Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge, (2004)

    Book  Google Scholar 

  29. Djemil, R., Attoui-Yahia, O., Khatmi, D.E.: DFT-ONIOM Study of the dopamine: βCD complex: NBO and AIM analysis. Can. J. Chem. 93, 1115 (2015)

    Article  CAS  Google Scholar 

  30. Stewart, J.J.P.: Application of the PM6 method to modeling the solid state. J. Mol. Model. 14, 499–535 (2008)

    Article  CAS  Google Scholar 

  31. Giussi, J.M., Gastaca, B., Albesa, A., Cortizo, M.S., Allegretti, P.E.: Determination of thermodynamic parameters of tautomerization in gas phase by mass spectrometry and DFT calculations: Keto-enol versus nitrile-ketenimine equilibria. Spectrochim. Acta A 78, 868 (2011)

    Article  Google Scholar 

  32. Morokuma, K.: ONIOM and its applications to material chemistry and catalyses. Bull. Korean Chem. Soc. 24, 797 (2003)

    Article  CAS  Google Scholar 

  33. Huang, M.J., Quan, Z., Liu, Y.M.: Int. computational modeling of inclusion complexes of β-cyclodextrin with enantiomers of salsolinol, N-methyl-salsolinol, and 1-benzyl-tetrahydroisoquinoline. J. Quantum Chem. 109, 81–90 (2009)

    Article  CAS  Google Scholar 

  34. Becke, A.D., Density-functional thermochemistry. III: the role of exact exchange. J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  35. Li, W., Bitai, L., Chen, F., Yang, F., Wang, Z.: Host–guest complex of cypermethrin with β-cyclodextrin: a spectroscopy and theoretical investigation. J. Mol. Struct. 990, 244 (2011)

    Article  CAS  Google Scholar 

  36. -Zhao, Y., Truhlar, D. G.: Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. A 109, 5656–5667 (2005)

    Article  CAS  Google Scholar 

  37. Zhao, Y., Schultz, N. E., Truhlar, D. G.: Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and non covalent interactions. J. Chem. Phys. 123, 161103 (2005)

    Article  Google Scholar 

  38. Zhao, Y., Schultz, N. E., Truhlar, D. G.: Design of density functional by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and non covalent interactions. J. Chem. Theory Comput. 2, 364–382 (2006)

    Article  Google Scholar 

  39. Zhao, Y., Truhlar, D. G.: Assessment of model chemistries for non covalent interactions. J Chem. Theory Comput. 2, 1009–10018 (2006)

    Article  CAS  Google Scholar 

  40. Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and non covalent interactions. J. Chem. Phys. 125, 194101 (2006)

    Article  Google Scholar 

  41. Zhao, Y., Truhlar, D.G.: Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys Chem. A 110, 13126–13130 (2006)

    Article  CAS  Google Scholar 

  42. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  43. Zhao, Y., Truhlar, D.: Theoretical chemistry accounts: theory, computation, and modeling. Theor. Chim. Acta. 120, 215 (2008)

    Article  CAS  Google Scholar 

  44. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. J. Chem. Phys. 10, 6615–6620 (2008)

    CAS  Google Scholar 

  45. Chai, J.-D., Head-Gordon, M.: Long-range corrected double-hybrid density functionals. J. Chem. Phys. 131, 174105 (2009)

    Article  Google Scholar 

  46. Grimme, S.: Semi empirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  47. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004)

    Article  CAS  Google Scholar 

  48. Grimme, S., Antony, J., Schwabe, T., Muck-Lichtenfeld, C.: Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules. Org. Biomol. Chem. 5, 741–758 (2007)

    Article  CAS  Google Scholar 

  49. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision B.01. Gaussian Inc, Wallingford (2010)

    Google Scholar 

  50. Hyperchem, Release 7.51 for windows 2002 Hypercube. Inc. (2002)

  51. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005)

    Article  CAS  Google Scholar 

  52. Haiahem, S., Nouar, L., Djilani, I., Bouhadiba, A., Madi, F., Khatmi, D.E.: Host-guest inclusion complex between b-cyclodextrin and paeonol: a theoretical approach. Comptes Rend. Chim. 16, 372–379 (2013)

    Article  CAS  Google Scholar 

  53. Cheng, Y., Wang, X., Li, W., Chang, D.: DFT study on the effects of catalysis by β-cyclodextrin in the reaction of p-nitrophenyl acetate. J. Mol. Model. 23, 21 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Algerian Ministry of Higher Education and Scientific Research and General Direction of Scientific and technological research as a part of the project CNEPRU (E01520140081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouna Cheriet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1965 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheriet, M., Madi, F., Nouar, L. et al. A DFT study of inclusion complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. J Incl Phenom Macrocycl Chem 89, 127–136 (2017). https://doi.org/10.1007/s10847-017-0738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0738-0

Keywords

Navigation