Skip to main content
Log in

XPS and XANES study of layered mineral valleriite

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Mineral valleriite of the Talnakh deposit, which consists of alternating copper-iron sulfide layers and brucite-like layers of magnesium-aluminium hydroxide is studied for the first time by XPS at photon excitation energies ranging from 1.253 keV to 6 keV and CuL FeL, SL, AlL, MgK, and OK edge TEY XANES using synchrotron radiation. The comparison of the XPS and XANES spectra of valleriite and chalcopyrite, in particular, demonstrates that in the sulfide layers of valleriite, Cu+ and Fe3+ are in a tetrahedral coordination, however, a local positive charge on both cations is slightly lower than that in chalcopyrite, apparently, due to a structure disorder. The concentration of oxygen-bound iron decreases with an increase in the depth of the analyzed layer even after ion etching; probably, Fe does not enter into the brucite-like layer, but mainly forms its own surface structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Genkin, V. V. Distler, and G. D. Gladyshev, Metallogeny of the Taimyr-Norilsk Region, Nauka, Moscow (1981).

    Google Scholar 

  2. H. T. Evans and R. Allman, Zeitschrift fur Kristallogr., 127, 73–93 (1968).

    Article  CAS  Google Scholar 

  3. A. E. Hughes, G. A. Kakos, T. W. Turney, and T. B. Williams, J. Solid State Chem., 104, Iss. 2, 422–436 (1993).

    Article  CAS  Google Scholar 

  4. R. Li and L. Cui, Int. J. Miner. Process., 41, 271–283 (1994).

    Article  CAS  Google Scholar 

  5. D. C. Harris, L. J. Cabry, and J. M. Stewart, Am. Miner., 55, 2110–2114 (1970).

    CAS  Google Scholar 

  6. D. A. Dodin, Nickel-Sulfide Ores of the Norilsk Deposits [in Russian], Nauka, Saint-Petersburg (2002).

    Google Scholar 

  7. N. I. Chistyakova, T. V. Cubaidulina, and V. S. Rusakov, Czech. J. Phys., 56, 123–131 (2006).

    Article  Google Scholar 

  8. T. V. Gubaidulina, N. I. Chistyakova, and V. S. Rusakov, Bull. Russ. A. Sci.: Physics., 71, No. 9, 1269–1272 (2007).

    Google Scholar 

  9. S. W. Goh, A. N. Buckley, W. M. Skinner, and L. J. Fan, Phys. Chem. Miner., 37, 389–405 (2010).

    Article  CAS  Google Scholar 

  10. O. Sipr, P. Machek, and A. Simunek, Phys. Rev. B, 69, Iss. 15, 155115 (2004).

    Article  Google Scholar 

  11. J. Petiau, Ph. Sainctavit, and G. Calas, Mater. Sci. Eng. B, 1, 237–249 (1988).

    Article  Google Scholar 

  12. D. Li, G. M. Bancroft, M. Kasrai, M. E. Fleet, X. H. Feng, B. X. Yang, and K. H. Tan, Phys. Chem. Miner., 21, 317–324 (1994).

    CAS  Google Scholar 

  13. Ph. Sainctavit, J. Petiau, A. M. Flank, J. Ringeissen, and S. Lewonczuk, Phys. B, 158, 623/624 (1989).

    Google Scholar 

  14. E. V. Korotaev, M. M. Syrokvashin, N. N. Peregudova, V. V. Kanazhevskii, L. N. Mazalov, and V. V. Sokolov, J. Struct. Chem., 56, No. 3, 596–600 (2015).

    Article  CAS  Google Scholar 

  15. Y. L. Mikhlin, Y. V. Tomashevich, I. P. Asanov, A. V. Okotrub, V. A. Varnek, and D. V. Vyalikh, Appl. Surf. Sci., 225, 395–409 (2004).

    Article  CAS  Google Scholar 

  16. Y. Mikhlin, Y. Tomashevich, V. Tauson, D. Vyalikh, S. Molodtsov, and R. Szargan, J. Electron Spectrosc. Relat. Phenom., 142, 85–90 (20050.

  17. Yu. V. Laptev, V. S. Shevchenko, and F. Kh. Urakaev, Hydrometallurgy, 98, 201–205 (2009).

    Article  CAS  Google Scholar 

  18. Yu. Mikhlin, Ye. Tomashevich, S. Vorobyev, S. Saikova, A. Romanchenko, and R. Félix, Appl. Surf. Sci., 387, 796–804 (2016).

    Article  CAS  Google Scholar 

  19. Y. Mikhlin, V. Nasluzov, A. Romanchenko, Y. Tomashevich, A. Shor, and R. Félix, Phys. Chem. Chem. Phys., 19, 2749–2759 (2017).

    Article  CAS  Google Scholar 

  20. S. Tanuma, H. Yoshikawa, H. Shinotsuka, and R. Ueda, J. Electron Spectrosc. Relat. Phenom. B, 190, 127–136 (2013).

    Article  CAS  Google Scholar 

  21. M. Gorgoi, S. Svensson, F. Schäfers, and G. M. Öhrwall, Nucl. Instrum. Methods A., 601, 48–53 (2009).

    Article  CAS  Google Scholar 

  22. J. F. W. Mosselmans, R. A. D. Pattrick, G. van der Laan, J. M. Charnock, D. J. Vaughan, C. M. B. Henderson, and C. D. Garner, Phys. Chem. Miner., 22, 311–317 (1995).

    Article  CAS  Google Scholar 

  23. P. A. van Aken, Z. Y. Wu, F. Langenhorst, and F. Seifert, Phys. Rev. B, 60, 3815–3820 (1999).

    Article  Google Scholar 

  24. P. A. van Aken, B. Liebscher, and V. J. Styrsa, Phys. Chem. Miner., 25, 494–498 (1998).

    Article  Google Scholar 

  25. L. J. Garvie, Am. Miner., 95, 92–97 (2010).

    Article  CAS  Google Scholar 

  26. C. Weigel, G. Calas, L. Cormier, L. Galoisy, and G. S. Henderson, J. Phys.: Condens. Matter., 20, No. 13, 135219 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Romanchenko.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 6, pp. 1184–1190, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhlin, Y.L., Romanchenko, A.S., Tomashevich, E.V. et al. XPS and XANES study of layered mineral valleriite. J Struct Chem 58, 1137–1143 (2017). https://doi.org/10.1134/S0022476617060105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617060105

Keywords

Navigation