Skip to main content
Log in

The Electrophysiological Properties of Cortical Neurons in the Epileptic Foci of Children with Refractory Temporal Lobe Epilepsy

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy is a severe disorder of the central nervous system associated with an imbalance of excitation and inhibition in the brain, manifested by recurrent seizures. Approximately 30% of patients with epilepsy are pharmacoresistant, meaning that existing antiepileptic drugs can not completely control the seizures. One approach to treating refractory epilepsy is to surgically remove the seizure foci, usually located in the temporal cortex, hippocampus, or amygdala. This permits sustained remission in approximately 60–75% of cases. The study of morphological and functional features of neuronal networks in epileptic foci of patients with refractory temporal lobe epilepsy is necessary to understand the mechanisms of pathogenesis of this disease and to develop new approaches to its treatment. This study analyzed the electrophysiological properties of temporal cortex neurons obtained during surgical removal of epileptic foci in children with refractory temporal lobe epilepsy. The biophysical membrane properties of the neurons in brain slices were investigated using the patch-clamp method. We compared them with the properties of pyramidal neurons of the rat cortex. We found that human neurons are characterized by much higher excitability than rat neurons. They generate action potentials in response to minimal depolarization and maintain a high frequency of discharges. At the same time, they are characterized by a high membrane input resistance. The identified biophysical characteristics of neurons may underlie the pathological process leading to the generation of pharmacoresistant seizures in children with temporal lobe epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N (2017) Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88:296–303. https://doi.org/10.1212/WNL.0000000000003509

    Article  PubMed  PubMed Central  Google Scholar 

  2. Löscher W, Potschka H, Sisodiya SM, Vezzani A (2020) Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 72:606–638. https://doi.org/10.1124/pr.120.019539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Braun KPJ (2017) Preventing cognitive impairment in children with epilepsy. Curr Opin Neurol 30:140–147. https://doi.org/10.1097/WCO.0000000000000424

    Article  PubMed  Google Scholar 

  4. Jayalakshmi S, Vooturi S, Gupta S, Panigrahi M (2017) Epilepsy surgery in children. Neurology India 65:485. https://doi.org/10.4103/neuroindia.NI_1033_16

    Article  PubMed  Google Scholar 

  5. Englot DJ, Rolston JD, Wang DD, Sun PP, Chang EF, Auguste KI (2013) Seizure outcomes after temporal lobectomy in pediatric patients. J Neurosurg Pediatr 12:134–141. https://doi.org/10.3171/2013.5.PEDS12526

    Article  PubMed  Google Scholar 

  6. Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: Is prevention of damage antiepileptogenic? Current Medicinal Chemistry 21:663–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albrecht J, Zielińska M (2017) Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 42:1724–1734. https://doi.org/10.1007/s11064-016-2105-8

    Article  CAS  PubMed  Google Scholar 

  8. Wong-Kisiel LC, Blauwblomme T, Ho M-L, Boddaert N, Parisi J, Wirrell E, Nabbout R (2018) Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Res 145:1–17. https://doi.org/10.1016/j.eplepsyres.2018.05.006

    Article  PubMed  Google Scholar 

  9. Smirnova EY, Amakhin DV, Malkin SL, Chizhov AV, Zaitsev AV (2018) Acute Changes in Electrophysiological Properties of Cortical Regular-Spiking Cells Following Seizures in a Rat Lithium–Pilocarpine Model. Neuroscience 379:202–215. https://doi.org/10.1016/j.neuroscience.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  10. Huberfeld G, Blauwblomme T, Miles R (2015) Hippocampus and epilepsy: Findings from human tissues. Revue Neurologique 171:236–251. https://doi.org/10.1016/j.neurol.2015.01.563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tasker JG, Hoffman NW, Kim YI, Fisher RS, Peacock WJ, Dudek FE (1996) Electrical properties of neocortical neurons in slices from children with intractable epilepsy. J Neurophysiol 75:931–939. https://doi.org/10.1152/jn.1996.75.2.931

    Article  CAS  PubMed  Google Scholar 

  12. Kroon T, van Hugte E, van Linge L, Mansvelder HD, Meredith RM (2019) Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex. Sci Rep 9:5037. https://doi.org/10.1038/s41598-019-41661-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Juraska JM, Drzewiecki CM (2020) Cortical reorganization during adolescence: What the rat can tell us about the cellular basis. Dev Cogn Neurosci 45:100857. https://doi.org/10.1016/j.dcn.2020.100857

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors (2020) SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

  16. Campagnola L, Kratz MB, Manis PB (2014) ACQ4: An open-source software platform for data acquisition and analysis in neurophysiology research. Front Neuroinform 8:3. https://doi.org/10.3389/fninf.2014.00003

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hunter JD (2007) Matplotlib: A 2D Graphics Environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  18. Jaffe DB, Brenner R (2018) A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 119:1506–1520. https://doi.org/10.1152/jn.00385.2017

    Article  CAS  PubMed  Google Scholar 

  19. Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859–882. https://doi.org/10.1113/jphysiol.2006.126367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banerjee J, Dey S, Dixit AB, Doddamani R, Sharma MC, Garg A, Chandra PS, Tripathi M (2020) GABAA Receptor-Mediated Epileptogenicity in Focal Cortical Dysplasia (FCD) Depends on Age at Epilepsy Onset. Front Cell Neurosci 14:562811. https://doi.org/10.3389/fncel.2020.562811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehnhoff J, Strauss U, Wierschke S, Grosser S, Pollali E, Schneider UC, Holtkamp M, Dehnicke C, Deisz RA (2019) The anticonvulsant lamotrigine enhances Ih in layer 2/3 neocortical pyramidal neurons of patients with pharmacoresistant epilepsy. Neuropharmacology 144:58–69. https://doi.org/10.1016/j.neuropharm.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  22. Bocchio M, Lukacs IP, Stacey R, Plaha P, Apostolopoulos V, Livermore L, Sen A, Ansorge O, Gillies MJ, Somogyi P, Capogna M (2018) Group II Metabotropic Glutamate Receptors Mediate Presynaptic Inhibition of Excitatory Transmission in Pyramidal Neurons of the Human Cerebral Cortex. Front Cell Neurosci 12:508. https://doi.org/10.3389/fncel.2018.00508

    Article  CAS  PubMed  Google Scholar 

  23. Verhoog MB, Goriounova NA, Obermayer J, Stroeder J, Hjorth JJJ, Testa-Silva G, Baayen JC, de Kock CPJ, Meredith RM, Mansvelder HD (2013) Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses. J Neurosci 33:17197–17208. https://doi.org/10.1523/JNEUROSCI.3158-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teichgräber LA, Lehmann T-N, Meencke H-J, Weiss T, Nitsch R, Deisz RA (2009) Impaired function of GABAB receptors in tissues from pharmacoresistant epilepsy patients. Epilepsia 50:1697–1716. https://doi.org/10.1111/j.1528-1167.2009.02094.x

    Article  CAS  PubMed  Google Scholar 

  25. Tóth K, Hofer KT, Kandrács Á, Entz L, Bagó A, Erőss L, Jordán Z, Nagy G, Sólyom A, Fabó D, Ulbert I, Wittner L (2018) Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. J Physiol (Lond) 596:317–342. https://doi.org/10.1113/JP275413

  26. Berg J, Sorensen SA, Ting JT, Miller JA, Chartrand T, Buchin A, Bakken TE, Budzillo A, Dee N, Ding S-L, Gouwens NW, Hodge RD, Kalmbach B, Lee C, Lee BR, Alfiler L, Baker K, Barkan E, Beller A, Berry K, Bertagnolli D, Bickley K, Bomben J, Braun T, Brouner K, Casper T, Chong P, Crichton K, Dalley R, de Frates R, Desta T, Lee SD, D’Orazi F, Dotson N, Egdorf T, Enstrom R, Farrell C, Feng D, Fong O, Furdan S, Galakhova AA, Gamlin C, Gary A, Glandon A, Goldy J, Gorham M, Goriounova NA, Gratiy S, Graybuck L, Gu H, Hadley K, Hansen N, Heistek TS, Henry AM, Heyer DB, Hill D, Hill C, Hupp M, Jarsky T, Kebede S, Keene L, Kim L, Kim M-H, Kroll M, Latimer C, Levi BP, Link KE, Mallory M, Mann R, Marshall D, Maxwell M, McGraw M, McMillen D, Melief E, Mertens EJ, Mezei L, Mihut N, Mok S, Molnar G, Mukora A, Ng L, Ngo K, Nicovich PR, Nyhus J, Olah G, Oldre A, Omstead V, Ozsvar A, Park D, Peng H, Pham T, Pom CA, Potekhina L, Rajanbabu R, Ransford S, Reid D, Rimorin C, Ruiz A, Sandman D, Sulc J, Sunkin SM, Szafer A, Szemenyei V, Thomsen ER, Tieu M, Torkelson A, Trinh J, Tung H, Wakeman W, Waleboer F, Ward K, Wilbers R, Williams G, Yao Z, Yoon J-G, Anastassiou C, Arkhipov A, Barzo P, Bernard A, Cobbs C, de Witt Hamer PC, Ellenbogen RG, Esposito L, Ferreira M, Gwinn RP, Hawrylycz MJ, Hof PR, Idema S, Jones AR, Keene CD, Ko AL, Murphy GJ, Ng L, Ojemann JG, Patel AP, Phillips JW, Silbergeld DL, Smith K, Tasic B, Yuste R, Segev I, de Kock CPJ, Mansvelder HD, Tamas G, Zeng H, Koch C, Lein ES (2021) Human neocortical expansion involves glutamatergic neuron diversification. Nature 598:151–158. https://doi.org/10.1038/s41586-021-03813-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levinson S, Tran CH, Barry J, Viker B, Levine MS, Vinters HV, Mathern GW, Cepeda C (2020) Paroxysmal Discharges in Tissue Slices From Pediatric Epilepsy Surgery Patients: Critical Role of GABAB Receptors in the Generation of Ictal Activity. Front Cell Neurosci 14:54. https://doi.org/10.3389/fncel.2020.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kraus L, Monni L, Schneider UC, Onken J, Spindler P, Holtkamp M, Fidzinski P (2020) Preparation of Acute Human Hippocampal Slices for Electrophysiological Recordings. J Vis Exp 159: e61085. https://doi.org/10.3791/61085

    Article  CAS  Google Scholar 

  29. Kandrács Á, Hofer KT, Tóth K, Tóth EZ, Entz L, Bagó AG, Erőss L, Jordán Z, Nagy G, Fabó D, Ulbert I, Wittner L (2019) Presence of synchrony-generating hubs in the human epileptic neocortex. J Physiol 597(230): 5639–5670. https://doi.org/10.1113/JP278499

    Article  CAS  PubMed  Google Scholar 

  30. Holtkamp D, Opitz T, Niespodziany I, Wolff C, Beck H (2017) Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+ channel inactivation. Epilepsia 58:27–41. https://doi.org/10.1111/epi.13602

    Article  CAS  PubMed  Google Scholar 

  31. Tang F, Hartz AMS, Bauer B (2017) Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 8:301. https://doi.org/10.3389/fneur.2017.00301

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kwan P, Brodie MJ (2005) Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 46:224–235. https://doi.org/10.1111/j.0013-9580.2005.31904.x

    Article  CAS  PubMed  Google Scholar 

  33. Remy S, Beck H (2006) Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129:18–35. https://doi.org/10.1093/brain/awh682

    Article  PubMed  Google Scholar 

  34. Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H (2003) A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 53:469–479. https://doi.org/10.1002/ana.10473

    Article  CAS  PubMed  Google Scholar 

  35. Malkin SL, Kim KK, Tikhonov DB, Zaitsev AV (2014) Properties of spontaneous and miniature excitatory postsynaptic currents in neurons of the rat prefrontal cortex. Journal of Evolutionary Biochemistry and Physiology 50(6): 506-514. https://doi.org/10.1134/S0022093014060052

    Article  CAS  Google Scholar 

  36. Krimer LS, Zaitsev AV, Czanner G, Kröner S, González-Burgos G, Povysheva NV, Iyengar S, Barrionuevo G, Lewis DA (2005) Cluster Analysis–Based Physiological Classification and Morphological Properties of Inhibitory Neurons in Layers 2–3 of Monkey Dorsolateral Prefrontal Cortex. Journal of Neurophysiology 94:3009–3022. https://doi.org/10.1152/jn.00156.2005

    Article  PubMed  Google Scholar 

  37. Menendez de la Prida L, Benavides-Piccione R, Sola R, Pozo MA (2002) Electrophysiological properties of interneurons from intraoperative spiking areas of epileptic human temporal neocortex. Neuroreport 13:1421–1425. https://doi.org/10.1097/00001756-200208070-00015

    Article  PubMed  Google Scholar 

  38. Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15:2523–2564. https://doi.org/10.1162/089976603322385063

    Article  PubMed  Google Scholar 

  39. Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Müller U, Sander T (2008) KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 71:177–183. https://doi.org/10.1212/01.wnl.0000317090.92185.ec

    Article  CAS  PubMed  Google Scholar 

  40. Miller JP, Moldenhauer HJ, Keros S, Meredith AL (2021) An emerging spectrum of variants and clinical features in KCNMA1-linked channelopathy. Channels (Austin) 15:447–464. https://doi.org/10.1080/19336950.2021.1938852

  41. Zybura A, Hudmon A, Cummins TR (2021) Distinctive Properties and Powerful Neuromodulation of Nav1.6 Sodium Channels Regulates Neuronal Excitability. Cells 10:1595. https://doi.org/10.3390/cells10071595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nomura S, Kida H, Hirayama Y, Imoto H, Inoue T, Moriyama H, Mitsushima D, Suzuki M (2019) Reduction of spike generation frequency by cooling in brain slices from rats and from patients with epilepsy. J Cereb Blood Flow Metab 39:2286–2294. https://doi.org/10.1177/0271678X18795365

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the RSF grant no. 20-75-00131.

Author information

Authors and Affiliations

Authors

Contributions

Malkis S.L.—electrophysiological experiments, data analysis, writing of the article. Khachatryan V.A.—surgery, writing of the article. Fedorov E.V.—clinical data analysis, writing of the article. Zaitsev A.V.—experimental design, discussion of the results, writing of the article.

Corresponding author

Correspondence to S. L. Malkin.

Ethics declarations

Conflict of interest

The authors declare no explicit or potential conflicts of interest in the publishing of this paper.

Additional information

Translated by S. Malkin

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 2, pp. 183–201https://doi.org/10.1134/S0022093022010197.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkin, S.L., Khachatryan, V.A., Fedorov, E.V. et al. The Electrophysiological Properties of Cortical Neurons in the Epileptic Foci of Children with Refractory Temporal Lobe Epilepsy. J Evol Biochem Phys 58, 215–229 (2022). https://doi.org/10.1134/S0022093022010197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022010197

Keywords:

Navigation