Skip to main content

Are Changes in Synaptic Function That Underlie Hyperexcitability Responsible for Seizure Activity?

  • Chapter
  • First Online:
Issues in Clinical Epileptology: A View from the Bench

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 813))

Abstract

The synaptic and intrinsic mechanisms responsible for epileptic seizures and briefer interictal epileptic discharges have been characterized in some detail. This chapter will outline some aspects of this work in the context of focal epilepsies, particularly in the temporal lobe, and will identify some of the major questions that remain. Early work, mainly using the actions of convulsant treatments on brain slices in vitro, revealed synaptic circuitry that could recruit populations of neurons into synchronous epileptic discharges. Subsequent investigations into cellular mechanisms of chronic experimental and clinical foci, again often in vitro, have revealed complex changes in synaptic properties, synaptic connectivity, intrinsic neuronal properties and selective losses of neurons: unraveling their roles in generating seizures, interictal discharges and interictal dysfunctions/comorbidities remains a significant challenge. In vivo recordings have revealed aspects of the pathophysiology of epileptic foci that have practical implications, for instance high-frequency oscillations, and potentially high-frequency hypersynchronous neuronal firing, which have been useful in localizing the epileptogenic zone for surgical resection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen PJ, Fish DR, Smith SJM (1992) Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. Electroencephalogr Clin Neurophysiol 82:155–159

    Article  CAS  PubMed  Google Scholar 

  2. Artinian J, Peret A, Marti G, Epsztein J, Crepel V (2011) Synaptic kainate receptors in interplay with I-NaP shift the sparse firing of dentate granule cells to a sustained rhythmic mode in temporal lobe epilepsy. J Neurosci 31:10811–10818

    Article  CAS  PubMed  Google Scholar 

  3. Babb TL, Wilson CL, Isokawa-Akesson M (1987) Firing patterns of human limbic neurons during stereoencephalography (SEEG) and clinical temporal lobe seizures. Electroencephalogr Clin Neurophysiol 66:467–482

    Article  CAS  PubMed  Google Scholar 

  4. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  CAS  PubMed  Google Scholar 

  5. Baulac S, Baulac M (2009) Advances on the genetics of mendelian idiopathic epilepsies. Neurol Clin 27:1041–1061

    Article  PubMed  Google Scholar 

  6. Berger T, Luscher HR (2003) Timing and precision of spike initiation in layer V pyramidal cells of the rat somatosensory cortex. Cereb Cortex 13:274–281

    Article  PubMed  Google Scholar 

  7. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535

    Article  CAS  PubMed  Google Scholar 

  8. Bikson M, Fox JE, Jefferys JGR (2003) Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. J Neurophysiol 89:2330–2333

    Article  PubMed  Google Scholar 

  9. Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal LS (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:717–729

    Article  CAS  PubMed  Google Scholar 

  10. Bragin A, Benassi SK, Kheiri F, Engel J (2011) Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia 52:45–52

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bragin A, Engel JJ, Wilson CL, Fried I, Mathern GW (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid – treated rats with chronic seizures. Epilepsia 40:127–137

    Article  CAS  PubMed  Google Scholar 

  12. Bragin A, Engel JJ, Wilson CL, Vizentin E, Mathern GW (1999) Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia 40:1210–1221

    Article  CAS  PubMed  Google Scholar 

  13. Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE, Kanner AM, O’Brien TJ, Whittemore VH, Winawer MR, Patel M, Scharfman HE (2013) Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 54:44–60

    Article  PubMed Central  PubMed  Google Scholar 

  14. Buckmaster PS, Ingram EA, Wen XL (2009) Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci 29:8259–8269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Buckmaster PS, Jongen-Relo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 19:9519–9529

    CAS  PubMed  Google Scholar 

  16. Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53:41–58

    Article  CAS  PubMed  Google Scholar 

  17. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  CAS  PubMed  Google Scholar 

  18. Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben Ari Y, Esclapez M, Bernard C (2001) Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4:52–62

    Article  CAS  PubMed  Google Scholar 

  19. Curia G, Longo D, Biagini G, Jones RSG, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Deans JK, Bikson M, Fox JE, Jefferys JGR (2003) Effects of AC fields at powerline frequencies on gamma oscillations in vitro. Abstracts Viewer/Itinerary Planner, Program No. 258.1

    Google Scholar 

  21. DeFelipe J (1999) Chandelier cells and epilepsy. Brain 122:1807–1822

    Article  PubMed  Google Scholar 

  22. Dinocourt C, Petanjek Z, Freund TF, Ben Ari Y, Esclapez M (2003) Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol 459:407–425

    Article  PubMed  Google Scholar 

  23. Fisher RS, Webber WRS, Lesser RP, Arroyo S, Uematsu S (1992) High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 9:441–448

    Article  CAS  PubMed  Google Scholar 

  24. Foffani G, Uzcategui YG, Gal B, Menendez de la Prida L (2007) Reduced spike-timing reliability correlates with the emercience of fast ripples in the rat epileptic hippocampus. Neuron 55:930–941

    Article  CAS  PubMed  Google Scholar 

  25. Gnatkovsky V, Francione S, Cardinale F, Mai R, Tassi L, Lo Russo G, de Curtis M (2011) Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals. Epilepsia 52:477–488

    Article  PubMed  Google Scholar 

  26. Heng K, Haney MM, Buckmaster PS (2013) High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54:1535–1541

    Article  CAS  PubMed  Google Scholar 

  27. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873

    Article  CAS  PubMed  Google Scholar 

  28. Jacobs J, Zijlmans M, Zelmann R, Chatillon CE, Hall J, Olivier A, Dubeau F, Gotman J (2010) High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 67:209–220

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jefferys JGR (1989) Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome. J Neurophysiol 62:458–468

    CAS  PubMed  Google Scholar 

  30. Jefferys JGR (1995) Non-synaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75:689–723

    CAS  PubMed  Google Scholar 

  31. Jefferys JGR (2007) Epilepsy in vitro: electrophysiology and computer modeling. In: Engel J Jr, Pedley TA, Aicardi J, Dichter MA, Moshé SL (eds) Epilepsy: a comprehensive textbook. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  32. Jefferys JGR, Evans BJ, Hughes SA, Williams SF (1992) Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in the rat: preservation of pyramidal cells and incidence of dark cells. Neuropathol Appl Neurobiol 18:53–70

    Article  CAS  PubMed  Google Scholar 

  33. Jefferys JGR, Haas HL (1982) Synchronized bursting of CA1 pyramidal cells in the absence of synaptic transmission. Nature 300:448–450

    Article  CAS  PubMed  Google Scholar 

  34. Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, da Silva FHL (2012) Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 98:250–264

    Article  PubMed  Google Scholar 

  35. Jiruska P, Csicsvari J, Powell AD, Fox JE, Chang WC, Vreugdenhil M, Li X, Palus M, Bujan AF, Dearden RW, Jefferys JGR (2010) High-frequency network activity, global increase in neuronal activity and synchrony expansion precede epileptic seizures in vitro. J Neurosci 30:5690–5701

    Article  CAS  PubMed  Google Scholar 

  36. Jiruska P, De Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591:787–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JGR (2010) High-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain 133:1380–1390

    Article  PubMed Central  PubMed  Google Scholar 

  38. Jiruska P, Tomasek M, Netuka D, Otahal J, Jefferys JGR, Li X, Marusic P (2008) Clinical impact of high-frequency seizure onset zone in a case of bi-temporal epilepsy. Epileptic Disord 10:231–238

    PubMed  Google Scholar 

  39. Knowles WD, Funch PG, Schwartzkroin PA (1982) Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro. Neuroscience 7:1713–1722

    Article  CAS  PubMed  Google Scholar 

  40. Knowles WD, Schwartzkroin PA (1981) Local circuit synaptic interactions in hippocampal brain slices. J Neurosci 1:318–322

    CAS  PubMed  Google Scholar 

  41. Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23:2440–2452

    CAS  PubMed  Google Scholar 

  42. Köhling R, Lücke A, Straub H, Speckmann EJ, Tuxhorn I, Wolf P, Pannek H, Oppel F (1998) Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain 121:1073–1087

    Article  PubMed  Google Scholar 

  43. Köhling R, Staley K (2011) Network mechanisms for fast ripple activity in epileptic tissue. Epilepsy Res 97:318–323

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lockard JS, Ward AA Jr (1980) Epilepsy: a window to brain mechanisms. Raven Press, New York

    Google Scholar 

  45. Mellanby J, George G, Robinson A, Thompson P (1977) Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry 40:404–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Miles R, Wong RKS, Traub RD (1984) Synchronized afterdischarges in the hippocampus: contribution of local synaptic interactions. Neuroscience 12:1179–1189

    Article  CAS  PubMed  Google Scholar 

  47. Mitchell J, Gatherer M, Sundstrom LE (1995) Loss of hilar somatostatin neurons following tetanus toxin- induced seizures. Acta Neuropathol (Berl) 89:425–430

    Article  CAS  Google Scholar 

  48. Mohammed HS, Kaufman CB, Limbrick DD, Steger-May K, Grubb RL, Rothman SM, Weisenberg JLZ, Munro R, Smyth MD (2012) Impact of epilepsy surgery on seizure control and quality of life: a 26-year follow-up study. Epilepsia 53:712–720

    Article  PubMed  Google Scholar 

  49. Mormann F, Jefferys JGR (2013) Neuronal firing in human epileptic cortex: the ins and outs of synchrony during seizures. Epilepsy Curr 13:100–102

    Article  PubMed Central  PubMed  Google Scholar 

  50. Norwood BA, Bauer S, Wegner S, Hamer HM, Oertel WH, Sloviter RS, Rosenow F (2011) Electrical stimulation-induced seizures in rats: a “dose-response” study on resultant neurodegeneration. Epilepsia 52:E109–E112

    Article  PubMed  Google Scholar 

  51. Patrylo PR, Dudek FE (1998) Physiological unmasking of new glutamatergic pathways in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats. J Neurophysiol 79:418–429

    CAS  PubMed  Google Scholar 

  52. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little Brown, Boston

    Google Scholar 

  53. Pitkänen A, Schwartzkroin PA, Moshé SL (2005) Models of seizures and epilepsy. Elsevier Academic, Amsterdam

    Google Scholar 

  54. Poolos NP, Johnston D (2012) Dendritic ion channelopathy in acquired epilepsy. Epilepsia 53(Suppl 9):32–40. doi:10.1111/epi.12033

  55. Rajasekaran K, Todorovic M, Kapur J (2012) Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Ann Neurol 72:91–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Rosa MLNM, Jefferys JGR, Sanders MW, Pearson RCA (1999) Expression of mRNAs encoding flip isoforms of GluR1 and GluR2 glutamate receptors is increased in rat hippocampus in epilepsy induced by tetanus toxin. Epilepsy Res 36:243–251

    Article  CAS  PubMed  Google Scholar 

  57. Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  PubMed  Google Scholar 

  58. Sayin U, Osting S, Hagen J, Rutecki P, Sutula T (2003) Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J Neurosci 23:2759–2768

    CAS  PubMed  Google Scholar 

  59. Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, Trevelyan AJ (2012) Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun 3:1060

    Article  PubMed Central  PubMed  Google Scholar 

  60. Schwartzkroin PA (1975) Characteristics of CA1 neurons recorded intracellularly in hippocampal in vitro slice preparation. Brain Res 85:423–436

    Article  CAS  PubMed  Google Scholar 

  61. Schwartzkroin PA (1986) Hippocampal slices in experimental and human epilepsy. Adv Neurol 44:991–1010

    CAS  PubMed  Google Scholar 

  62. Schwartzkroin PA (2009) Encyclopedia of basic epilepsy research. Academic, London

    Google Scholar 

  63. Schwartzkroin PA, Futamachi KJ, Noebels JL, Prince DA (1975) Transcallosal effects of a cortical epileptiform focus. Brain Res 99:59–68

    Article  CAS  PubMed  Google Scholar 

  64. Schwartzkroin PA, Prince DA (1977) Penicillin-induced epileptiform activity in the hippocampal in vitro preparation. Ann Neurol 1:463–469

    Article  CAS  PubMed  Google Scholar 

  65. Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147:117–130

    Article  CAS  PubMed  Google Scholar 

  66. Schwartzkroin PA, Prince DA (1979) Recordings from presumed glial cells in the hippocampal slice. Brain Res 161:533–538

    Article  CAS  PubMed  Google Scholar 

  67. Schwartzkroin PA, Slawsky M (1977) Probable calcium spikes in hippocampal neurons. Brain Res 133:157–161

    Article  Google Scholar 

  68. Schwartzkroin PA, Turner DA, Knowles WD, Wyler AR (1983) Studies of human and monkey “epileptic” neocortex in the in vitro slice preparation. Ann Neurol 13:249–257

    Article  CAS  PubMed  Google Scholar 

  69. Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41–66

    Article  CAS  PubMed  Google Scholar 

  70. Sloviter RS (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 35:640–654

    Article  CAS  PubMed  Google Scholar 

  71. Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M (2003) “Dormant basket cell” hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol 459:44–76

    Article  CAS  PubMed  Google Scholar 

  72. Sorensen AT, Kokaia M (2013) Novel approaches to epilepsy treatment. Epilepsia 54:1–10

    Article  PubMed  Google Scholar 

  73. Staba RJ, Frighetto L, Behnke EJ, Mathern G, Fields T, Bragin A, Ogren J, Fried I, Wilson CL, Engel J (2007) Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia 48:2130–2138

    Article  PubMed  Google Scholar 

  74. Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5:1016–1022

    CAS  PubMed  Google Scholar 

  75. Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Traub RD, Miles R, Jefferys JGR (1993) Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after-discharges in the guinea-pig hippocampal slice. J Physiol 461:525–547

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Traub RD, Wong RKS (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  CAS  PubMed  Google Scholar 

  78. Trevelyan AJ, Sussillo D, Yuste R (2007) Feedforward inhibition contributes to the control of epileptiform propagation speed. J Neurosci 27:3383–3387

    Article  CAS  PubMed  Google Scholar 

  79. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, Cash SS (2011) Single-neuron dynamics in human focal epilepsy. Nat Neurosci 14:635–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Vicedomini JP, Nadler JV (1990) Stimulation-induced status epilepticus: role of the hippocampal mossy fibers in the seizures and associated neuropathology. Brain Res 512:70–74

    Article  CAS  PubMed  Google Scholar 

  81. Walker MC, Perry H, Scaravilli F, Patsalos PN, Shorvon SD, Jefferys JGR (1999) Halothane as a neuroprotectant during constant stimulation of the perforant path. Epilepsia 40:359–364

    Article  CAS  PubMed  Google Scholar 

  82. Whittington MA, Jefferys JGR (1994) Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat. J Physiol (Lond) 481:593–604

    CAS  Google Scholar 

  83. Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615

    Article  CAS  PubMed  Google Scholar 

  84. Wiebe S, Jette N (2012) Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol 8:669–677

    Article  CAS  PubMed  Google Scholar 

  85. Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ, Dudek FE (2009) Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 29:2103–2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Worrell GA, Gardner AB, Stead SM, Hu SQ, Goerss S, Cascino GJ, Meyer FB, Marsh R, Litt B (2008) High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 131:928–937

    Article  PubMed Central  PubMed  Google Scholar 

  87. Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabo I, Sik A, Buzsáki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46

    CAS  PubMed  Google Scholar 

  88. Zhang W, Buckmaster PS (2009) Dysfunction of the dentate basket cell circuit in a rat model of temporal lobe epilepsy. J Neurosci 29:7846–7856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful for research support from Epilepsy Research UK (P1102) and the Medical Research Council of the UK (G082162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. R. Jefferys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jefferys, J.G.R. (2014). Are Changes in Synaptic Function That Underlie Hyperexcitability Responsible for Seizure Activity?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics