Skip to main content
Log in

Autophagy as a Pathogenetic Link and a Target for Therapy of Musculoskeletal System Diseases

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionarily conserved process of degradation of intracellular structures by lysosomal enzymes in specialized compartments such as autophagolysosomes plays a role in many processes, such as differentiation, maintenance of energy homeostasis, and protection of cells in the presence of destructive changes. Autophagy is of particular importance for the functioning of skeletal and cardiac muscles, namely, to maintain the structural and physiological integrity of the sarcomere during muscle contraction, as well as for pathological changes in the muscle fiber. Activation of the autophagy process occurs in response to a variety of stressful stimuli, such as muscle damage during intense exercise, resulting in tissue repair, including through the activation of satellite cells. In this review, autophagy is considered as a protective process, in which several types are distinguished, differing in their mechanisms. The review will cover the molecular basis of the autophagy process, its role in the vital activity and functioning of cells, as well as the therapeutic potential of autophagy activators in the treatment of severe human diseases associated with disorders of skeletal and cardiac muscles. Special attention will be paid to the description of pharmacological drugs that can enhance the activity of autophagy, as well as the mechanisms of their action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

AA:

amino acids

ROS:

reactive oxygen species

DMD:

Duchenne myodystrophy

AMPK:

AMP-activated protein kinase

Atg :

genes associated with autophagy

CASA:

chaperone-assisted selective autophagy

HSP:

heat shock proteins

mTOR:

mammalian target of rapamycin

ULK1:

Unc-51 like autophagy-initiating kinase 1

LC3:

microtubule-associated protein 1 light chain 3

REFERENCES

  1. Condello M, Pellegrini E, Caraglia M, Meschini S (2019) Targeting autophagy to overcome human diseases. Int J Mol Sci 20(3):725. https://doi.org/10.3390/ijms20030725

    Article  CAS  PubMed Central  Google Scholar 

  2. Kirkin V, Rogov VV (2019) A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol Cell 76:268–285. https://doi.org/10.1016/j.molcel.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Wu NN, Tian H, Chen P, Wang D, Ren J, Zhang Y (2019) Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health. Cells 8(11):1436. https://doi.org/10.3390/cells8111436

    Article  CAS  PubMed Central  Google Scholar 

  4. Valenzuela CA, Ponce C, Zuloaga R, González P, Avendaño-Herrera R, Valdés JA, Molina A (2020) Effects of crowding on the three main proteolytic mechanisms of skeletal muscle in rainbow trout (Oncorhynchus mykiss). BMC Vet Res 16:294. https://doi.org/10.1186/s12917-020-02518-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, Hoehn KL, Yan Z (2013) Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27:4184–4193. https://doi.org/10.1096/fj.13-228486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jokl EJ, Blanco G (2016) Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mamm Genome 27(11):525–537. https://doi.org/10.1007/s00335-016-9659-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bell RAV, Al-Khalaf M, Megeney LA (2016) The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle 6:16. https://doi.org/10.1186/s13395-016-0086-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiao J, Demontis F (2017) Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin. Pharmacol 34:1–6. https://doi.org/10.1016/j.coph.2017.03.009

    Article  CAS  Google Scholar 

  9. Mammucari C, Rizzuto R (2010) Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 131:536–543. https://doi.org/10.1016/j.mad.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee D, Bareja A, Bartlett D, White J (2019) Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 8:183. https://doi.org/10.3390/cells8020183

    Article  CAS  PubMed Central  Google Scholar 

  11. Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DWD, van der Velden J, Brundel BJJM (2019) Untying the knot: protein quality control in inherited cardiomyopathies. Pflugers Arch Eur J Physiol 471:795–806. https://doi.org/10.1007/s00424-018-2194-0

    Article  CAS  Google Scholar 

  12. Vincent AE, Grady JP, Rocha MC, Alston CL, Rygiel KA, Barresi R, Taylor RW, Turnbull DM (2016) Mitochondrial dysfunction in myofibrillar myopathy. Neuromuscul Disord 26:691–701. https://doi.org/10.1016/j.nmd.2016.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy Is Required to Maintain Muscle Mass. Cell Metab 10:507–515. https://doi.org/10.1016/j.cmet.2009.10.008

    Article  PubMed  Google Scholar 

  14. Levine B, Packer M, Codogno P (2015) Development of autophagy inducers in clinical medicine. J Clin Invest 125:14–24. https://doi.org/10.1172/JCI73938

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glick D, Barth S, Macleod KF (2010) Autophagy: Cellular and molecular mechanisms. J Pathol 221:3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parousis A, Carter HN, Tran C, Erlich AT, Mesbah Moosavi ZS, Pauly M, Hood DA (2018) Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy 14:1886–1897. https://doi.org/10.1080/15548627.2018.1491488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levine B, Kroemer G (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell 176:11–42. https://doi.org/10.1016/j.cell.2018.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodney GG, Pal R, Abo-Zahrah R (2016) Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 98:103–112. https://doi.org/10.1016/j.freeradbiomed.2016.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parzych KR, Klionsky DJ (2014) An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants Redox Signal 20:460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  Google Scholar 

  20. Kim YA, Kim YS, Song W (2012) Autophagic response to a single bout of moderate exercise in murine skeletal muscle. J Physiol Biochem 68:229–235. https://doi.org/10.1007/s13105-011-0135-x

    Article  CAS  PubMed  Google Scholar 

  21. Kaludercic N, Maiuri MC, Kaushik S, Fernández ÁF, De Bruijn J, Castoldi F, Chen Y, Ito J, Mukai R, Murakawa T, Nah J, Pietrocola F, Saito T, Sebti S, Semenzato M, Tsansizi L, Sciarretta S, Madrigal-Matute J (2020) Comprehensive autophagy evaluation in cardiac disease models. Cardiovasc Res 116:483–504. https://doi.org/10.1093/cvr/cvz233

    Article  CAS  PubMed  Google Scholar 

  22. Kirkin V (2020) History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? J Mol Biol 432:3–27. https://doi.org/10.1016/j.jmb.2019.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB (2013) Autophagy: Regulation and role in development. Autophagy 9:951–972. https://doi.org/10.4161/auto.24273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics 194:341–361. https://doi.org/10.1534/genetics.112.149013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41. https://doi.org/10.1038/cr.2013.168

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J (2015) Teaching the basics of autophagy and mitophagy to redox biologists-Mechanisms and experimental approaches. Redox Biol 4:242–259 https://doi.org/10.1016/j.redox.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12-5-16L1. Mol Cell 55(2):238–252. https://doi.org/10.1016/j.molcel.2014.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9:424–425. https://doi.org/10.4161/auto.22931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei Y, Liu M, Li X, Liu J, Li H (2018) Origin of the Autophagosome Membrane in Mammals. Biomed Res Int 2018. https://doi.org/10.1155/2018/1012789

  30. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  31. Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122. https://doi.org/10.1247/csf.08005

    Article  CAS  PubMed  Google Scholar 

  32. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F (2009) Multiple roles of the cytoskeleton in autophagy. Biol. Rev. 84:431–448. https://doi.org/10.1111/j.1469-185X.2009.00082.x

    Article  PubMed  Google Scholar 

  33. Tang D, Kang R, Zeh HJ, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxidants Redox Signal 14:1315–1335. https://doi.org/10.1089/ars.2010.3356

    Article  CAS  Google Scholar 

  34. Lee J-Y, Koga H, Kawaguchi Y, Tang W, Wong E, Gao Y-S, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao T-P (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980. https://doi.org/10.1038/emboj.2009.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mostowy S (2014) Multiple Roles of the Cytoskeleton in Bacterial Autophagy. PLoS Pathog 10:e1004409. https://doi.org/10.1371/journal.ppat.1004409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30. https://doi.org/10.1038/cdd.2012.72

    Article  CAS  PubMed  Google Scholar 

  37. Mercer EJ, Lin YF, Cohen-Gould L, Evans T (2018) Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 435:41–55. https://doi.org/10.1016/j.ydbio.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matkovich SJ, Van Booven DJ, Hindes A, Kang MY, Druley TE, Vallania FLM, Mitra RD, Reilly MP, Cappola TP, Dorn GW (2010) Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease. J Clin Invest 120:280–289. https://doi.org/10.1172/JCI39085

    Article  CAS  PubMed  Google Scholar 

  39. Lahvic JL, Ji Y, Marin P, Zuflacht JP, Springel MW, Wosen JE, Davis L, Hutson LD, Amack JD, Marvin MJ (2013) Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 384:166–180. https://doi.org/10.1016/j.ydbio.2013.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong KW, Lim JE, Kim JW, Tabara Y, Ueshima H, Miki T, Matsuda F, Cho YS., Kim Y, Oh B (2014) Identification of three novel genetic variations associated with electrocardiographic traits (QRS duration and PR interval) in East Asian. Human Mol Genetics 23(24):6659-6667. https://doi.org/10.1093/hmg/ddu374

    Article  CAS  Google Scholar 

  41. Ranek MJ, Stachowski MJ, Kirk JA, Willis MS (2018) The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc B Biol Sci 373(1738):20160530. https://doi.org/10.1093/hmg/ddu374

    Article  CAS  Google Scholar 

  42. Ulbricht A, Höhfeld J (2013) Tension-induced autophagy: May the chaperone be with you. Autophagy 9:920–922. https://doi.org/10.4161/auto.24213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, Unger A, Kirfel G, van der Ven PFM, Marcus K, Linke WA, Clemen CS, Schröder R, Fürst DO (2020) Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun 8(1):154. https://doi.org/10.1186/s40478-020-01001-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG (2020) A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 41:1091–1111. https://doi.org/10.1002/humu.24004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J (2010) Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance. Curr Biol 20:143–148. https://doi.org/10.1016/j.cub.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  46. Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J (2015) Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy 11:538–546. https://doi.org/10.1080/15548627.2015.1017186

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming R, Harris GL, Nezis IP, Schubert D, Simonsen A, Finley KD (2011) p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 7:572–583. https://doi.org/10.4161/auto.7.6.14943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248. https://doi.org/10.1016/j.cell.2004.11.046

    Article  CAS  PubMed  Google Scholar 

  50. Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S (2019) The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 10:376–413. https://doi.org/10.1080/21505594.2019.1605803

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yordy B, Iwasaki A (2011) Autophagy in the control and pathogenesis of viral infection. Curr Opin Virol 1:196–203. https://doi.org/10.1016/j.coviro.2011.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deretic V, Levine B (2009) Autophagy, Immunity, and Microbial Adaptations. Cell Host Microbe 5:527–549. https://doi.org/10.1016/j.chom.2009.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong HH, Sanyal S (2020) Manipulation of autophagy by (+) RNA viruses. Semin. Cell Dev Biol 101:3–11. https://doi.org/10.1016/j.semcdb.2019.07.013

    Article  CAS  Google Scholar 

  55. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040. https://doi.org/10.1126/science.1103966

    Article  CAS  PubMed  Google Scholar 

  56. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731. https://doi.org/10.1126/science.1106036

    Article  CAS  PubMed  Google Scholar 

  57. Gransee HM, Mantilla CB, Sieck GC (2012) Respiratory muscle plasticity. Compr Physiol 2:1441–1462. https://doi.org/10.1002/cphy.c110050

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle and Nerve 35:411–429. https://doi.org/10.1002/mus.20743

    Article  CAS  PubMed  Google Scholar 

  60. Di Meo S, Napolitano G, Venditti P (2019) Mediators of physical activity protection against ros-linked skeletal muscle damage. Int J Mol Sci 20(12):3024. https://doi.org/10.3390/ijms20123024

    Article  CAS  PubMed Central  Google Scholar 

  61. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z (2017) Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 8:1–13. https://doi.org/10.1038/s41467-017-00520-9

    Article  CAS  Google Scholar 

  62. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511–515. https://doi.org/10.1038/nature10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy Is Required to Maintain Muscle Mass. Cell Metab 10:507–515. https://doi.org/10.1016/j.cmet.2009.10.008

    Article  PubMed  Google Scholar 

  64. Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25. https://doi.org/10.1016/j.yjmcc.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  65. Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, Nguyen L, Gerard RD, Levine B, Rothermel BA, Hill JA (2008) Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 105:9745–9750. https://doi.org/10.1073/pnas.0706802105

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jiao J, Demontis F (2017) Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 34:1–6. https://doi.org/10.1016/j.coph.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  67. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825. https://doi.org/10.1016/j.cell.2010.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J (2016) Aging and Autophagy in the Heart. Circ Res 118:1563–1576. https://doi.org/10.1161/CIRCRESAHA.116.307474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kakimoto Y, Okada C, Kawabe N, Sasaki A, Tsukamoto H, Nagao R, Osawa M (2019) Myocardial lipofuscin accumulation in ageing and sudden cardiac death. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-40250-0

    Article  CAS  Google Scholar 

  70. De Meyer GRY, Martinet W (2009) Autophagy in the cardiovascular system. Biochim Biophys Acta - Mol Cell Res 1793:1485–1495. https://doi.org/10.1016/j.bbamcr.2008.12.011

    Article  CAS  Google Scholar 

  71. McMillan EM, Quadrilatero J (2014) Autophagy is required and protects against apoptosis during myoblast differentiation. Biochem J 462:267–277. https://doi.org/10.1042/BJ20140312

    Article  CAS  PubMed  Google Scholar 

  72. Ryall JG (2017) Simultaneous measurement of mitochondrial and glycolytic activity in quiescent muscle stem cells. In: Methods in Molecular Biology. Humana Press Inc 1556:245-253. https://doi.org/10.1007/978-1-4939-6771-1_13

    Article  CAS  Google Scholar 

  73. Perrotta C, Cattaneo MG, Molteni R, De Palma C (2020) Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 8:1563. https://doi.org/10.3389/fcell.2020.602901

    Article  Google Scholar 

  74. Paolini A, Omairi S, Mitchell R, Vaughan D, Matsakas A, Vaiyapuri S, Ricketts T, Rubinsztein DC, Patel K (2018) Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury. Sci Rep 8. https://doi.org/10.1038/s41598-018-27429-7

  75. Lee DE, Bareja A, Bartlett DB, White JP (2019) Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 8(2):183. https://doi.org/10.3390/cells8020183

    Article  CAS  PubMed Central  Google Scholar 

  76. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778. https://doi.org/10.2337/db10-0351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bibee KP, Cheng YJ, Ching JK, Marsh JN, Li AJ, Keeling RM, Connolly AM, Golumbek PT, Myerson JW, Hu G, Chen J, Shannon WD, Lanza GM, Weihl CC, Wickline SA (2014) Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. FASEB J 28:2047–2061. https://doi.org/10.1096/fj.13-237388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cabet E, Batonnet-Pichon S, Delort F, Gausserès B, Vicart P, Lilienbaum A (2015) Antioxidant Treatment and Induction of Autophagy Cooperate to Reduce Desmin Aggregation in a Cellular Model of Desminopathy. PLoS One 10:e0137009. https://doi.org/10.1371/journal.pone.0137009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3. https://doi.org/10.1038/cddis.2012.159

  80. Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99:9213–9218. https://doi.org/10.1073/pnas.142166599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barlow AD, Nicholson ML, Herbert TP (2013) Evidence for rapamycin toxicity in pancreatic β-Cells and a review of the underlying molecular mechanisms. Diabetes 62:2674–2682. https://doi.org/10.2337/db13-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pauly M, Daussin F, Burelle Y, Li T, Godin R, Fauconnier J, Koechlin-Ramonatxo C, Hugon G, Lacampagne A, Coisy-Quivy M, Liang F, Hussain S, Matecki S, Petrof BJ (2012) AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol 181:583–592. https://doi.org/10.1016/j.ajpath.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  83. Kuno A, Hosoda R, Sebori R, Hayashi T, Sakuragi H, Tanabe M, Horio Y (2018) Resveratrol Ameliorates Mitophagy Disturbance and Improves Cardiac Pathophysiology of Dystrophin-deficient mdx Mice. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-33930-w

    Article  CAS  Google Scholar 

  84. Yao Q, Ke ZQ, Guo S, Yang XS, Zhang FX, Liu XF, Chen X, Chen HG, Ke HY, Liu C (2018) Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol 124:26–34. https://doi.org/10.1016/j.yjmcc.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  85. Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci 128:3525–353. https://doi.org/10.1242/jcs.169748

    Article  CAS  PubMed  Google Scholar 

  86. Allamand V, Briñas L, Richard P, Stojkovic T, Quijano-Roy S, Bonne G (2011) ColVI myopathies: where do we stand, where do we go? Skelet Muscle 1:30. https://doi.org/10.1186/2044-5040-1-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, Grumati P, Bonaldo P (2015) Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy 11:2142–2152. https://doi.org/10.1080/15548627.2015.1108508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fan J, Yang X, Li J, Shu Z, Dai J, Liu X, Li B, Jia S, Kou X, Yang Y, Chen N (2017) Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget 8(11):17475–17490. https://doi.org/10.18632/oncotarget.15728

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shen S, Liao Q, Liu J, Pan R, Lee SMY, Lin L (2019) Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle 10(2):429–444. https://doi.org/10.1002/jcsm.12393

    Article  PubMed  PubMed Central  Google Scholar 

  90. Blokhuis AM, Groen EJN, Koppers M, Van Den Berg LH, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794. https://doi.org/10.1007/s00401-013-1125-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gal J, Ström A-L, Kilty R, Zhang F, Zhu H (2007) p62 Accumulates and Enhances Aggregate Formation in Model Systems of Familial Amyotrophic Lateral Sclerosis. J Biol Chem 282:11068–11077. https://doi.org/10.1074/jbc.M608787200

    Article  CAS  PubMed  Google Scholar 

  92. Sasaki S (2011) Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 70:349–359. https://doi.org/10.1097/NEN.0b013e3182160690

    Article  PubMed  Google Scholar 

  93. Li Y, Guo Y, Wang X, Yu X, Duan W, Hong K, Wang J, Han H, Li C (2015) Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298:12–25. https://doi.org/10.1016/j.neuroscience.2015.03.061

    Article  CAS  PubMed  Google Scholar 

  94. Cicardi ME, Cristofani R, Crippa V, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Galbiati M, Piccolella M, Messi E, Carra S, Pennuto M, Rusmini P, Poletti A (2019) Autophagic and proteasomal mediated removal of mutant androgen receptor in muscle models of spinal and bulbar muscular atrophy. Front Endocrinol (Lausanne) 10:569. https://doi.org/10.3389/fendo.2019.00569

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant No. 20-15-00271.

Author information

Authors and Affiliations

Authors

Contributions

Writing a manuscript: K.K.K. and A.I.C.; surveying the relevant literature: K.K.K. and K.S.S.; editing a manuscript: A.A.K.

Corresponding author

Correspondence to K. K. Kalugina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no evident or potential conflict of interest in relation with the publication of this review article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 6–7, pp. 810–827https://doi.org/10.31857/S0869813921060042.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalugina, K.K., Sukhareva, K.S., Churkinа, A.I. et al. Autophagy as a Pathogenetic Link and a Target for Therapy of Musculoskeletal System Diseases. J Evol Biochem Phys 57, 666–680 (2021). https://doi.org/10.1134/S0022093021030145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021030145

Keywords:

Navigation