Skip to main content
Log in

The Influence of Intranasally Administered Insulin and C-peptide on AMP-Activated Protein Kinase Activity, Mitochondrial Dynamics and Apoptosis Markers in the Hypothalamus of Rats with Streptozotocin-Induced Diabetes

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Most important factors leading to the development of diabetic encephalopathy in type 1 diabetes mellitus (T1DM) are impaired energy metabolism and mitochondrial dynamics, as well as activation of apoptosis in brain neurons, which is largely due to insulin and C-peptide deficiency in the CNS. In T1DM, hypothalamic neuronal dysfunctions lead to disturb both feeding behavior and central regulation of energy metabolism. One of the approaches to compensate for insulin and C-peptide deficiency in the brain is their intranasal administration. However, its influence on the functional state of hypothalamic neurons has not yet been studied. The aim of the work was to study the effect of intranasally administered insulin and C-peptide on the activity of AMP-activated protein kinase (AMPK) and expression of Drp-1 and mitofusins (Mfn-1 and Mfn-2) responsible for the biogenesis of mitochondria, pro- and anti-apoptotic proteins Bax and Bcl-2, autophagy-associated protein Beclin-1, and melanocortin receptors (MCR) in the hypothalamus of male rats with T1DM induced by 50 mg/kg of streptozotocin. We studied a 7-day intranasal administration to diabetic rats (D) of insulin (20 µg/rat/day, DI), C-peptide (36 µg/rat/day, DC), and insulin combined with C-peptide at two doses of 12 and 36 µg/rat/day (DIC12, DIC36). In the hypothalamus of the DI and DIC36 rat groups, there were observed normalization of AMPK activity and the Bax/Bcl-2 ratio (typically increased in T1DM), restoration of Drp-1, Mfn-2 and Beclin-1 expression, and increased expression of type 4 MCR responsible for transduction of anorexigenic signals, with all changes being associated in these groups with attenuated hyperphagia. In the DIС12 and DС rat groups, the restorative effects of the intranasal treatment were less pronounced. Thus, intranasal administration of insulin and C-peptide, to the greatest extent at a 1:3 molar ratio, restores energetic balance and mitochondrial dynamics, as well as suppresses pro-apoptotic processes in the hypothalamus of rats with severe T1DM. These effects appear to underlie their neuroprotective action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Pertseva, M.N. and Shpakov, A.O., Conservatism of the insulin signaling system in evolution of invertebrates and vertebrate animals, J. Evol. Biochem. Physiol., 2002, vol. 38(5), pp. 547–561. doi: 10.1023/A:1022008932029

  2. Pertseva, M.N., Shpakov, A.O., Plesneva, S.A., and Kuznetsova, L.A., A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system, Comp. Biochem. Physiol., 2003, vol. 134(1), pp. 11–36. doi: 10.1016/s1096-4959(02)00160-4

  3. Wahren, J., Kallas, A., and Sima, A.A., The clinical potential of C-peptide replacement in type 1 diabetes, Diabetes, 2012, vol. 61(4), pp. 761–772. doi: 10.2337/db11-1423

  4. Wahren, J. and Larsson, C., C-peptide: new findings and therapeutic possibilities, Diabetes Res. Clin. Pract., 2015, vol. 107(3), pp. 309–319. doi: 10.1016/j.diabres.2015.01.016

  5. Yosten, G.L., Kolar, G.R., Redlinger, L.J., and Samson, W.K., Evidence for an interaction between proinsulin C-peptide and GPR146, J. Endocrinol., 2013, vol. 218(2), pp. B1–B8. doi: 10.1530/JOE-13-0203

  6. Brunskill, N.J., C-peptide and diabetic kidney disease, J. Intern. Med., 2017, vol. 281(1), pp. 41–51. doi: 10.1111/joim.12548

  7. Shafqat, J., Melles, E., Sigmundsson, K., Johansson, B.L., Ekberg, K., Alvelius, G., Henriksson, M., Johansson, J., Wahren, J., and Jörnvall, H., Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects, Cell. Mol. Life Sci., 2006, vol. 63(15), pp. 1805–1811. doi: 10.1007/s00018-006-6204-6

  8. Jornvall, H., Lindahl, E., Astorga-Wells, J., Lind, J., Holmlund, A., Melles, E., Alvelius, G., Nerelius, C., Mäler, L., and Johansson, J., Oligomerization and insulin interactions of proinsulin C-peptide: Three-fold relationships to properties of insulin, Biochem. Biophys. Res. Commun., 2010, vol. 391(3), pp. 1561–1566.

  9. Nerelius, C., Alvelius, G., and Jörnvall, H., N-terminal segment of proinsulin C-peptide active in insulin interaction/desaggregation, Biochem. Biophys. Res. Commun., 2010, vol. 403(3–4), pp. 462–467.

  10. Chen, R., Shi, J., Yin, Q., Li, X., Sheng, Y., Han, J., Zhuang, P., and Zhang, Y., Morphological and pathological characteristics of brain in diabetic encephalopathy, J. Alzheimers Dis., 2018, vol. 65(1), pp. 15–28.

  11. Rehni, A.K., Nautiyal, N., Perez-Pinzon, M.A., and Dave, K.R., Hyperglycemia/hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics, Metab. Brain Dis., 2015, vol. 30(2), pp. 437–447.

  12. Pugazhenthi, S., Qin, L., and Reddy, P.H., Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease, Biochim. Biophys. Acta Mol. Basis Dis., 2017, vol. 1863(5), pp. 1037–1045.

  13. Madhavi, Y.V., Gaikwad, N., Yerra, V.G., Kalvala, A.K., Nanduri, S., and Kumar, A., Targeting AMPK in diabetes and diabetic complications: energy homeostasis, autophagy and mitochondrial health, Curr. Med. Chem., 2018.

  14. Derkach, K.V., Bondareva, V.M., and Shpakov, A.O., Coadministration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters, Adv. Gerontol., 2018, vol. 8(2), pp. 139–146.

  15. Derkach, K.V., Bondareva, V.M., Perminova, A.A., and Shpakov, A.O., C-peptide and insulin during combined intranasal administration improve the metabolic parameters and activity of the adenylate cyclase system in the hypothalamus, myocardium, and epididymal fat of rats with type 2 diabetes, Cell Tissue Biol., 2019, vol. 13(3), pp. 228–236.

  16. Francis, G.J., Martinez, J.A., Liu, W.Q., Xu, K., Ayer, A., Fine, J., Tuor, U.I., Glazner, G., Hanson, L.R., Frey, W.H., and Toth, C., Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy, Brain, 2008, vol. 131(12), pp. 3311–3334.

  17. Chen, J., Hu, L., Yang, G., and Hu, Q., Current therapeutic strategy in the nasal delivery of insulin: recent advances and future directions, Curr. Pharm. Biotechnol., 2018, vol. 19(5), pp. 400–415.

  18. Santiago, J.C.P. and Hallschmid, M., Outcomes and clinical implications of intranasal insulin administration to the central nervous system, Exp. Neurol., 2019, vol. 317, pp. 180–190.

  19. Huynh, M.K., Kinyua, A.W., Yang, D.J., and Kim, K.W., Hypothalamic AMPK as a regulator of energy homeostasis, Neural Plast., 2016, 2754078. doi: 10.1155/2016/2754078

  20. Neumann, D. and Viollet, B., AMP-activated protein kinase signalling, Int. J. Mol. Sci., 2019, vol. 20(3), pii: E766.

  21. Bertholet, A.M., Delerue, T., Millet, A.M., Moulis, M.F., David, C., Daloyau, M., Arnauné-Pelloquin, L., Davezac, N., Mils, V., Miquel, M.C., Rojo, M., and Belenguer, P., Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity, Neurobiol. Dis., 2016, vol. 90, pp. 3–19.

  22. Chen, C., Wang, Y., Zhang, J., Ma, L., Gu, J., and Ho, G., Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice, Dis. Model Mech., 2014, vol. 7(6), pp. 723–730.

  23. Wang, B. and Cheng, K.K., Hypothalamic AMPK as a mediator of hormonal regulation of energy balance, Int. J. Mol. Sci., 2018, vol. 19(11), pii: E3552.

  24. Namkoong, C., Kim, M.S., Jang, P.G., Han, S.M., Park, H.S., Koh, E.H., Lee, W.J., Kim, J.Y., Park, I.S., and Park, J.Y., Enhanced hypothalamic AMP-activated protein kinase activity contributes to hyperphagia in diabetic rats, Diabetes, 2005, vol. 54(1), pp. 63–68.

  25. Park, S., Kim, D.S., Kang, S., and Shin, B.K., Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats, Brain Res. Bull., 2014, vol. 108, pp. 18–26.

  26. Soleymaninejad, M., Joursaraei, S.G., Feizi, F., and Jafari Anarkooli, I., The effects of lycopene and insulin on histological changes and the expression level of Bcl-2 family genes in the hippocampus of streptozotocin-induced diabetic rats, J. Diabetes Res., 2017, 4650939.

  27. Fang, L., Li, X., Zhong, Y., Yu, J., Yu, L., Dai, H., and Yan, M., Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats, J. Neurochem., 2015, vol. 135(2), pp. 431–440.

  28. Shi, B., Ma, M., Zheng, Y., Pan, Y., and Lin, X., mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury, J. Cell. Physiol., 2019, vol. 234(8), pp. 12562–12568.

  29. Derkach, K., Zakharova, I., Zorina, I., Bakhtyukov, A., Romanova, I., Bayunova, L., and Shpakov, A., The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect, PLOS One, 2019, vol. 14(3), e0213779.

  30. Schmittgen, T.D. and Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc., 2008, vol. 3(6), pp. 1101–1108.

  31. Derkach, K.V., Shpakova, E.A., Bondareva, V.M., and Shpakov, A.O., The effect of intranasal administration of proinsulin C-peptide and its C-terminal fragment on metabolic parameters in rats with streptozotocin diabetes, J. Evol. Biochem. Physiol., 2018, vol. 54(3), pp. 242–245.

  32. Mohseni, S., Neurologic damage in hypoglycemia, Handb. Clin. Neurol., 2014, vol. 126, pp. 513–532.

  33. Lu, C.J., Guo, Y.Z., Zhang, Y., Yang, L., Chang, Y., Zhang, J.W., Jing, L., and Zhang, J.Z., Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats, Pathol. Res. Pract., 2017, vol. 213(9), pp. 1191–1199.

  34. Schneeberger, M., Dietrich, M.O., Sebastián, D., Imbernón, M., Castaño, C., Garcia, A., Esteban, Y., Gonzalez-Franquesa, A., Rodríguez, I.C., Bortolozzi, A., Garcia-Roves, P.M., Gomis, R., Nogueiras, R., Horvath, T.L., Zorzano, A., and Claret, M., Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance, Cell, 2013, vol. 155(1), pp. 172–187.

  35. Diaz, B., Fuentes-Mera, L., Tovar, A., Montiel, T., Massieu, L., Martínez-Rodríguez, H.G., and Camacho, A., Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells, Brain Res., 2015, vol. 1627, pp. 80–89.

  36. Ramírez, S., Gómez-Valadés, A.G., Schneeberger, M., Varela, L., Haddad-Tóvolli, R., Altirriba, J., Noguera, E., Drougard, A., Flores-Martínez, Á., Imbernón, M., Chivite, I., Pozo, M., Vidal-Itriago, A., Garcia, A., Cervantes, S., Gasa, R., Nogueiras, R., Gama-Pérez, P., Garcia-Roves, P.M., Cano, D.A., Knauf, C., Servitja, J.M., Horvath, T.L., Gomis, R., Zorzano, A., and Claret, M., Mitochondrial dynamics mediated by mitofusin 1 is required for POMC Neuron glucose-sensing and insulin release control, Cell. Metab., 2017, vol. 25(6), pp. 1390–1399.

  37. Guan, Z.F., Zhou, X.L., Zhang, X.M., Zhang, Y., Wang, Y.M., Guo, Q.L., Ji, G., Wu, G.F., Wang, N.N., Yang, H., Yu, Z.Y., Zhou, H.G., Guo, J.C., and Liu, Y.C., Beclin-1- mediated autophagy may be involved in the elderly cognitive and affective disorders in streptozotocin-induced diabetic mice, Transl. Neurodegener., 2016, vol. 5, p. 22.

  38. Guo, Y.J., Wang, S.H., Yuan, Y., Li, F.F., Ye, K.P., Huang, Y., Xia, W.Q., and Zhou, Y., Vulnerability for apoptosis in the hippocampal dentate gyrus of STZ-induced diabetic rats with cognitive impairment, J. Endocrinol. Invest., 2014, vol. 37(1), pp. 87–96.

  39. Tian, Z., Wang, J., Xu, M., Wang, Y., Zhang, M., and Zhou, Y., Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats, Cell. Physiol. Biochem., 2016, vol. 40(6), pp. 1670–1677.

  40. Sanna, R.S., Muthangi, S., Sagar, C., and Devi, S.A., Grape seed proanthocyanidin extract and insulin prevents cognitive decline in type 1 diabetic rat by impacting Bcl-2 and Bax in the prefrontal cortex, Metab. Brain Dis., 2019, vol. 34(1), 103–117.

  41. Apostolatos, A., Song, S., Acosta, S., Peart, M., Watson, J.E., Bickford, P., Cooper, D.R., and Patel, N.A., Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform, J. Biol. Chem., 2012, vol. 287(12), pp. 9299–9310.

  42. Li, Z.G., Zhang, W., and Sima, A.A., C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells, Diabetes Metab. Res. Rev., 2003, vol. 19(5), pp. 375–385.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-015-00144) and budget funding within the state assignment to the Sechenov Institute of Evolutionary Physiology and Biochemistry (theme reg. no. АААА-А18-118012290427-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Ethics declarations

All experimental and maintenance procedures were performed in compliance with the requirements of the Ethics Committee at the Sechenov Institute of Evolutionary Physiology and Biochemistry, European Communities Council Directive 1986 (86/609/EEC), and the “Guide for the Care and Use of Laboratory Animals”.

This study did not involve human subjects as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkach, K.V., Zorina, I.I., Zakharova, I.O. et al. The Influence of Intranasally Administered Insulin and C-peptide on AMP-Activated Protein Kinase Activity, Mitochondrial Dynamics and Apoptosis Markers in the Hypothalamus of Rats with Streptozotocin-Induced Diabetes. J Evol Biochem Phys 56, 207–217 (2020). https://doi.org/10.1134/S0022093020030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020030035

Keywords:

Navigation