Skip to main content
Log in

Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2016

Abstract

Intranasal insulin (II) administration is widely used in the last years to treat Alzheimer’s disease and other cognitive disorders. Meanwhile, it is almost not used to treat type 2 diabetes mellitus (DM2), mainly due to insufficiently studied molecular mechanisms of its effect on the hormonal and metabolic status of the organism. The effect of II on activity of the hypothalamic signaling systems playing a key role in central regulation of energy metabolism is also poorly studied. The aim of this work was to study the effect of 5-week II treatment of male rats with the neonatal model of DM2 (0.48 ME/rat) both on the metabolic parameters and functional activity of the hypothalamic signaling systems. II treatment of diabetic rats (DI group) was shown to normalize the blood glucose level and restore glucose tolerance and utilization. In the hypothalamus of the DI group, the regulatory effects of agonists of the type 4 melanocortin receptor (MC4R), type 2 dopamine receptor (D2-DAR) and serotonin 1B receptor (S1BR) on adenylyl cyclase (AC) activity, reduced under DM2, were found to be restored; moreover, the inhibitory effect of S1BR agonists became even stronger as compared to control. In the DI group, the restoration of AC hormonal regulation was associated with a considerable increase in expression of the genes encoding S1BR and MC4R. Besides, the attenuation of the AC-stimulating effect of D2-DAR agonists against the background of decreasing expression of the Drd1 gene was found to promote the enhancement of the negative effect of dopamine on AC activity. II treatment did not have a considerable effect on expression of the genes encoding the insulin receptor and insulin receptor substrate-2, which was slightly reduced in the hypothalamus of diabetic rats. Thus, II treatment of rats with the neonatal model of DM2 partially restores the hypothalamic AC signaling pathways regulated by melanocortin, serotonin and dopamine, demonstrating thereby one of the mechanisms of the positive influence of II on energy metabolism and insulin sensitivity in peripheral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

adenylyl cyclase

ACSS:

adenylyl cyclase signaling system

GTT:

glucose tolerance test

BBB:

blood–brain barrier

D1:

DAR and D2-DAR-type 1 and 2 dopamine receptors

IGTT:

insulin/glucose tolerance test

IDE:

insulin-degrading enzyme

MC3R and MC4R:

type 3 and 4 melanocortin receptors

POMC:

proopiomelanocortin

DM1 and DM2:

type 1 and 2 diabetes mellitus

S1R and S6R:

type 1 and 6 serotonin (5-hydroxytryptamine) receptors

Gs- and Gi-proteins:

stimulatory and inhibitory G-proteins

HOMA-IR:

homeostasis model assessment of insulin resistance

PACAP-38:

pituitary adenylyl cyclase-activating polypeptide-38

References

  1. Shpakov, A.O. and Derkach, K.V., Gormonal’nye sistemy mozga i sakharnyi diabet 2-go tipa (Brain Hormonal Systems and Type 2 Diabetes Mellitus), St. Petersburg, 2015.

    Google Scholar 

  2. Shpakov, A.O., Derkach, K.V., and Berstein, L.M., Brain signaling systems in the type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases, Future Science OA (FSO), 2015, vol. 1, DOI: 10.4155/fso.15.23.

    Google Scholar 

  3. Shpakov, A.O., Role of disturbances in hormonal signaling systems in etiology and pathogenesis of diabetes mellitus, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 6, pp. 482–486.

    CAS  PubMed  Google Scholar 

  4. Shpakov, A.O., Functional activity of the insulin signaling system in the norm and under type 2 diabetes mellitus, Ross. Fiziol. Zh. im. I.M. Sechenova, 2015, vol. 101, no. 10, pp. 1103–1127.

    CAS  PubMed  Google Scholar 

  5. Banks, W.A., Owen, J.B., and Erickson, M.A., Insulin in the brain: there and back again, Pharmacol. Ther., 2012, vol. 136, pp. 82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghasemi, R., Haeri, A., Dargahi, L., Mohamed, Z., and Ahmadiani, A., Insulin in the brain: sources, localization and functions, Mol. Neurobiol., 2013, vol. 47, pp. 145–171.

    Article  CAS  PubMed  Google Scholar 

  7. Maianti, J.P., McFedries, A., Foda, Z.H., Kleiner, R.E., Du, X.Q., Leissring, M.A., Tang, W.J., Charron, M.J., Seeliger, M.A., Saghatelian, A., and Liu, D.R., Anti-diabetic activity of insulindegrading enzyme inhibitors mediated by multiple hormones, Nature, 2014, vol. 511, pp. 94–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin, X., Taguchi, A., Park, S., Kushner, J.A., Li, F., Li, Y., and White, M.F., Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes, J. Clin. Invest., 2004, vol. 114, pp. 908–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koch, L., Wunderlich, F.T., Seibler, J., Könner, A.C., Hampel, B., Irlenbusch, S., Brabant, G., Kahn, C.R., Schwenk, F., and Brüning, J.C., Central insulin action regulates peripheral glucose and fat metabolism in mice, J. Clin. Invest., 2008, vol. 118, pp. 2132–2147.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Derakhshan, F. and Toth, C., Insulin and the brain, Curr. Diabetes Rev., 2013, vol. 9, pp. 102–116.

    PubMed  Google Scholar 

  11. Novak, V., Milberg, W., Hao, Y., Munshi, M., Novak, P., Galica, A., Manor, B., Roberson, P., Craft, S., and Abduljalil, A., Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes, Diabetes Care, 2014, vol. 37, pp. 751–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derkach, K.V., Bogush, I.V., Berstein, L.M., and Shpakov, A.O., The influence of intranasal insulin on hypothalamic–pituitary–thyroid axis in normal and diabetic rats, Horm. Metab. Res., 2015, vol. 47, pp. 916–924.

    Article  CAS  PubMed  Google Scholar 

  13. Shpakov, A.O., Chistyakova, O.V., Derkach, K.V., Moiseyuk, I.V., and Bondareva, V.M., Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes, Central Eur. J. Biol., 2012, vol. 7, pp. 33–47.

    CAS  Google Scholar 

  14. Shpakov, A., Derkach, K., Moyseyuk, I., and Chistyakova, O., Alterations of hormone-sensitive adenylyl cyclase system in the tissues of rats with long-term streptozotocin diabetes and the influence of intranasal insulin, Dataset Papers in Science, 2013, vol. 2013, 698435. http://dx.doi.org/10.7167/2013/698435.

    Google Scholar 

  15. Sukhov, I.B., Shipilov, V.N., Chistyakova, O.V., Trost, A.M., and Shpakov, A.O., Long-term intranasal insulin administration improves spatial memory in male rats with prolonged type 1 diabetes mellitus and in healthy rats, Dokl. RAN, 2013, vol. 453, no. 5, pp. 577–580.

    Google Scholar 

  16. Shpakov, A.O., Derkach, K.V., Chistyakova, O.V., Sukhov, I.B., Shipilov, V.N., and Bondareva, V.M., The brain adenylyl cyclase signaling system and cognitive functions in rat with neonatal diabetes under the influence of intranasal serotonin, J. Metabolic Syndrome, 2012, vol. 1, http:// dx.doi.org/10.4172/jms.1000104.

    Google Scholar 

  17. Derkach, K.V., Bondareva, V.M., Chistyakova, O.V., Berstein, L.M., and Shpakov, A.O., The effect of long-term intranasal serotonin treatment on metabolic parameters and hormonal signaling in rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes, Int. J. Endocrinol., 2015, vol. 2015, Article ID 245459. doi:10.1155/2015/245459.

    Google Scholar 

  18. Shpakov, A.O., Shpakova, E.A., Tarasenko, I.I., Derkach, K.V., and Vlasov, G.P., The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system, Int. J. Pept. Res. Ther., 2010, vol. 16, pp. 95–105.

    Article  CAS  Google Scholar 

  19. Lochhead, J.J. and Thorne, R.G., Intranasal delivery of biologics to the central nervous system, Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 614–628.

    Article  CAS  PubMed  Google Scholar 

  20. Subramanian, S. and John, M., Intranasal administration of insulin lowers amyloid-beta levels in rat model of diabetes, Indian J. Exp. Biol., 2012, vol. 50, pp. 41–44.

    CAS  PubMed  Google Scholar 

  21. Born, J., Lange, T., Kern, W., McGregor, G.P., Bickel, U., and Fehm, H.L., Sniffing neuropeptides: a transnasal approach to the human brain, Nat. Neurosci., 2002, vol. 5, pp. 514–516.

    Article  CAS  PubMed  Google Scholar 

  22. Nogueiras, R., Wiedmer, P., Perez-Tilve, D., Veyrat-Durebex, C., Keogh, J.M., Sutton, G.M., Pfluger, P.T., Castaneda, T.R., Neschen, S., Hofmann, S.M., Howles, P.N., Morgan, D.A., Benoit, S.C., Szanto, I., Schrott, B., Schürmann, A., Joost, H.G., Hammond, C., Hui, D.Y., Woods, S.C., Rahmouni, K., Butler, A.A., Farooqi, I.S., O’Rahilly, S., Rohner-Jeanrenaud, F., and Tschöp, M.H., The central melanocortin system directly controls peripheral lipid metabolism, J. Clin. Invest., 2007, vol. 117, pp. 3475–3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haskell-Luevano, C., Schaub, J.W., Andreasen, A., Haskell, K.R., Moore, M.C., Koerper, L.M., Rouzaud, F., Baker, H.V., Millard, W.J., Walter, G., Litherland, S.A., and Xiang, Z., Voluntary exercise prevents the obese and diabetic metabolic syndrome of the melanocortin-4 receptor knockout mouse, FASEB J., 2009, vol. 23, pp. 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shpakov, A.O. and Derkach, K.V., Peptidergic signaling systems in the brain under diabetes mellitus, Tsitol., 2012, vol. 54, no. 10, pp. 733–741.

    CAS  Google Scholar 

  25. Shpakov, A.O. and Derkach, K.V., The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus, J. Signal Transduction, 2013, vol. 2013, 594213. http://dx.doi.org/10.1155/2013/594213.

    Article  Google Scholar 

  26. Hofbauer, K.G., Lecourt, A.C., and Peter, J.C., Antibodies as pharmacologic tools for studies on the regulation of energy balance, Nutrition, 2008, vol. 24, pp. 791–797.

    Article  CAS  PubMed  Google Scholar 

  27. Derkach, K.V., Shpakova, E.A., Zharova, O.A., and Shpakov, A.O., Metabolic changes in rats immunized with BSA-conjugated peptide derived from the N-terminal region of the type 4 melanocortin receptor, Dokl. RAN, 2014, vol. 458, no. 1, pp. 102–105.

    Google Scholar 

  28. Shpakov, A.O., Derkach, K.V., Zharova, O.A., and Shpakova, E.A., Functional activity of adenylyl cyclase system in the brain of rats with metabolic syndrome induced by immunization with peptide 11–25 of the type 4 melanocortin receptor, Neirokhim., 2015, vol. 32, no. 1, pp. 37–47.

    Google Scholar 

  29. Farooqi, I.S. and O’Rahilly, S., Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity, Nat. Clin. Pract. Endocrinol. Metab., 2008, vol. 4, pp. 569–577.

    Article  CAS  PubMed  Google Scholar 

  30. Benoit, S.C., Air, E.L., Coolen, L.M., Strauss, R., Jackman, A., Clegg, D.J., Seeley, R.J., and Woods, S.C., The catabolic action of insulin in the brain is mediated by melanocortins, J. Neurosci., 2002, vol. 22, pp. 9048–9052.

    CAS  PubMed  Google Scholar 

  31. Qiu, J., Zhang, C., Borgquist, A., Nestor, C.C., Smith, A.W., Bosch, M.A., Ku, S., Wagner, E.J., Rønnekleiv, O.K., and Kelly, M.J., Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels, Cell Metab., 2014, vol. 19, pp. 682–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, H.V., Plum, L., Ono, H., Gutierrez-Juarez, R., Shanabrough, M., Borok, E., Horvath, T.L., Rossetti, L., and Accili, D., Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons, Diabetes, 2010, vol. 59, pp. 337–346.

    Article  CAS  PubMed  Google Scholar 

  33. Xu, Y., Elmquist, J.K., and Fukuda, M., Central nervous control of energy and glucose balance: focus on the central melanocortin system, Ann. N.Y. Acad. Sci., 2011, vol. 1243, pp. 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shpakov, A.O., The functional state of biogenic amines- and acetylcholine-regulated signaling system of the brain in diabetes mellitus, Tsitol., 2012, vol. 54, no. 6, pp. 459–468.

    CAS  Google Scholar 

  35. Carvelli, L., Morón, J.A., Kahlig, K.M., Ferrer, J.V., Sen, N., Lechleiter, J.D., Leeb-Lundberg, L.M., Merrill, G., Lafer, E.M., Ballou, L.M., Shippenberg, T.S., Javitch, J.A., Lin, R.Z., and Galli, A., PI 3-kinase regulation of dopamine uptake, J. Neurochem., 2002, vol. 81, pp. 859–869.

    Article  CAS  PubMed  Google Scholar 

  36. Gelling, R.W., Morton, G.J., Morrison, C.D., Niswender, K.D., Myers, M.G., Rhodes, C.J., and Schwartz, M.W., Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes, Cell. Metab., 2006, vol. 3, pp. 67–73.

    Article  CAS  PubMed  Google Scholar 

  37. Huang, X.F., Zavitsanou, K., Huang, X., Yu, Y., Wang, H., Chen, F., Lawrence, A.J., and Deng, C., Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity, Behav. Brain Res., 2006, vol. 175, pp. 415–419.

    Article  CAS  PubMed  Google Scholar 

  38. Stice, E., Yokum, S., Zald, D., and Dagher, A., Dopamine-based reward circuitry responsivity, genetics, and overeating, Curr. Top Behav. Neurosci., 2011, vol. 6, pp. 81–93.

    Article  PubMed  Google Scholar 

  39. Davis, C., Levitan, R.D., Yilmaz, Z., Kaplan, A.S., Carter, J.C., and Kennedy, J.L., Binge eating disorder and the dopamine D2 receptor: Genotypes and sub-phenotypes, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, vol. 38, pp. 328–335.

    Article  CAS  PubMed  Google Scholar 

  40. Baik, J.H., Dopamine signaling in food addiction: role of dopamine D2 receptors, BMB Rep., 2013, vol. 46, pp. 519–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scranton, R. and Cincotta, A., Bromocriptineunique formulation of a dopamine agonist for the treatment of type 2 diabetes, Expert. Opin. Pharmacother., 2010, vol. 11, pp. 269–279.

    Article  CAS  PubMed  Google Scholar 

  42. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Bondareva, V.M., Guryanov, I.A., Vlasov, G.P., and Pertseva, M.N., Decrease in functional activity of G-proteins hormone-sensitive adenylate cyclase signaling system during experimental type II diabetes mellitus, Bull. Eksper. Biol. Med., 2006, vol. 142, no. 12, pp. 641–645.

    Google Scholar 

  43. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Guryanov, I.A., Vlasov, G.P., and Pertseva, M.N., Identification of disturbances in hormone-sensitive AC-system in the tissues of rats with types 1 and 2 diabetes mellitus using functional probes and synthetic nanopeptides, Tekhnol. Zhivykh Sistem, 2007, vol. 4, no. 5–6, pp. 96–108.

    CAS  Google Scholar 

  44. Nakata, M., Kohno, D., Shintani, N., Nemoto, Y., Hashimoto, H., Baba, A., and Yada, T., PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus, Neurosci. Lett., 2004, vol. 370, pp. 252–256.

    Article  CAS  PubMed  Google Scholar 

  45. Resch, J.M., Boisvert, J.P., Hourigan, A.E., Mueller, C.R., Yi, S.S., and Choi, S., Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis, Am. J. Physiol., 2011, vol. 301, pp. R1625–R1634.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © I.B. Sukhov, K.V. Derkach, O.V. Chistyakova, V.M. Bondareva, A.O. Shpakov, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 3, pp. 184—194.

An erratum to this article is available at http://dx.doi.org/10.1134/S1234567816050141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhov, I.B., Derkach, K.V., Chistyakova, O.V. et al. Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin. J Evol Biochem Phys 52, 204–216 (2016). https://doi.org/10.1134/S0022093016030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016030030

Key words

Navigation