Skip to main content
Log in

The mitochondrial megachannel is the permeability transition pore

  • Research Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Single-channel electrophysiological recordings from rat liver mitoplast membranes showed that the 1.3-nS mitochondrial megachannel was activated by Ca++ and inhibited by Mg++, Cyclosporin A, and ADP, probably acting at matrix-side sites. These agents are known to modulate the so-called mitochondrial permeability transition pore (Gunter, T. E., and Pfeiffer, D. R. (1990)Am. J. Physiol. 258, C755–C786) in the same manner. Furthermore, the megachannel is unselective, and the minimum pore size calculated from its conductance is in agreement with independent estimates of the minimum size of the permeabilization pore. The results support the tentative identification of the megachannel with the pore believed to be involved in the permeabilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonenko, Y. N., Kinnally, K. W., Perini, S., and Tedeschi, H. (1991).FEBS Lett. 285, 89–93.

    Google Scholar 

  • Asimakis, G. K., and Sordhal, L. A. (1981).Am. J. Physiol. 241, H672–H678.

    Google Scholar 

  • Bernardi, P., Angrilli, A., and Azzone, G. F. (1990).Eur. J. Biochem.,188, 91–97.

    Google Scholar 

  • Broekemeier, K. M., Dempsey, M. E., and Pfeiffer, D. R. (1989).J. Biol. Chem. 264, 7826–7830.

    Google Scholar 

  • Crompton, M., and Costi, A. (1988).Eur. J. Biochem. 178, 488–501.

    Google Scholar 

  • Crompton, M., Ellinger, H., and Costi, A. (1988).Biochem. J. 255, 357–360.

    Google Scholar 

  • Davidson, A. M., and Halestrap, A. P. (1990).Biochem. J. 268, 147–152.

    Google Scholar 

  • Fagian, M. M., Pereira da Silva, L., Martins, I. S., and Vercesi, A. E. (1990).J. Biol. Chem. 265, 19955–19960.

    Google Scholar 

  • Fournier, N., Ducet, G., and Crevat, A. (1987).J. Bioenerg. Biomembr. 19, 297–303.

    Google Scholar 

  • Garlid, K. D., and Beavis, A. D. (1986).Biochim. Biophys. Acta 853, 187–204.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258, C755–C786.

    Google Scholar 

  • Halestrap, A. P., and Davidson, A. M. (1990).Biochem. J. 268, 153–160.

    Google Scholar 

  • Harris, E. J., Al-Shaikhaly, M., and Baum, H. (1979).Biochem. J. 182, 455–464.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1979).Arch. Biochem. Biophys. 195, 460–467.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1980).J. Membr. Biol. 54, 231–236.

    Google Scholar 

  • Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Kinnally, K. W., Campo, M. L., and Tedeschi, H. (1989).J. Bioenerg. Biomembr. 21, 497–506.

    Google Scholar 

  • Kinnally, K. W., Zorov, D., Antonenko, Y., and Perini, S. (1991).Biochem. Biophys. Res. Commun. 176, 1183–1188.

    Google Scholar 

  • LaNoue, K. F., Watts, J. A., and Loch, C. D. (1981).Am. J. Physiol. 241, H663–H671.

    Google Scholar 

  • Massari, S., and Azzone, G. F. (1972).Biochim. Biophys. Acta 283, 23–29.

    Google Scholar 

  • McCormack, J. G., Halestrap, A. P., and Denton, R. M. (1990).Physiol. Rev. 70, 391–425.

    Google Scholar 

  • Nicholls, D., and Akermann, K. (1982).Biochim. Biophys. Acta 683, 57–88.

    Google Scholar 

  • Nicolli, A., Redetti, A., and Bernardi, P. (1991).J. Biol. Chem. 266, 9465–9470.

    Google Scholar 

  • Novgorodov, S. A., Gudz, T. I., Kushnareva, Y. E., Zorov, D. B., and Kudrjashov, Y. B. (1990).FEBS Lett. 277, 123–126.

    Google Scholar 

  • Petronilli, V., Szabó, I., and Zoratti, M. (1989).FEBS Lett. 259, 137–143.

    Google Scholar 

  • Sorgato, M. C., Keller, B. U., and Stuehmer, W. (1987).Nature (London)330, 498–500.

    Google Scholar 

  • Sorgato, M. C., Moran, O., DePinto V., Keller, B. U., and Stuehmer, W. (1989).J. Bioenerg. Biomembr. 21, 485–496.

    Google Scholar 

  • Szabó, I., and Zoratti, M. (1991).J. Biol. Chem. 266, 3376–3379.

    Google Scholar 

  • Zoratti, M., and Szabó, I. (1991). InTrends in Biomembranes and Bioenergetics (Menon, J. ed.), Compilers International, Trivandrum, India, pp. 263–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations used: PT: permeability transition; PTP: permeability transition pore; MMC: mitochondrial megachannel; IMAC: inner membrane anion channel. PA: permeability of ion A. CSP: Cyclosporin A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, I., Zoratti, M. The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr 24, 111–117 (1992). https://doi.org/10.1007/BF00769537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769537

Key words

Navigation