Skip to main content
Log in

Tissue Metabolism and the State of the Antioxidant Complex in the Black Sea Mollusks Anadara kagoshimensis (Tokunaga, 1906) and Mytilus galloprovincialis Lamarck, 1819 with Different Tolerances to Oxidative Stress

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The contents of amino acids and glucose, the activity of alanin aminotransferase (ALT), aspartate aminotransferase (AST), and the AO enzymes superoxide dismutase (SOD), catalase, glutathione peroxidase (GP), and glutathione reductase (GR), as well as the level of reduced glutathione (GSH) and TBA-reactive products, were investigated in the hepatopancreas, gills, and the foot of Black Sea bivalve mollusks: the blood cockle Anadara kagoshimensis (Tokunaga, 1906) (Bivalvia: Arcidae) and the mussel Mytilus galloprovincialis (Lamarck, 1819) (Bivalvia: Mytilidae) with their different tolerances to oxidative stress. Higher contents of glucose in the hepatopancreas and the foot and amino acids in the foot and a higher activity of AST in the gills were found in the mussel, which is relatively tolerant to hypoxia. Compared to blood cockle, mussels showed a higher GP and GR activity in hepatopancreas, GP activity in gills, and SOD activity in hepatopancreas and foot against the background of a higher content of TBA-reactive products in all studied tissues. A high content of amino acids was determined in the hepatopancreas and the gills of the blood cockle, which had a high tolerance to low oxygen. The activity of the ALT and AST enzymes in the foot and the activity of the ALT enzyme in the gills were higher in the blood cockle tissues than in the mussel tissues. This can be connected with more intensive processes of deamination and re-amination of amino acids in the cockle than in the mussel. The blood cockle had higher GP activity and GSH content in the foot and higher activity of SOD, catalase, and GR, as well the GSH level in the gills with a lower content of TBA products. The revealed peculiarities of the AO complex reflect adaptations of the mollusks to the oxygen regime in their habitat on the basis of specific peculiarities of their carbohydrate–protein metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Andreenko, T.I., Soldatov, A.A., and Golovina, I.V., Adaptive reorganization of the metabolism of the bivalve mollusk Anadara inaequivalvis Br. under conditions of experimental anoxia, Dokl. Nats. Akad. Nauk Ukr., 2009, no. 7, pp. 155–159.

  2. Belcheva, N.N., Dovzhenko, N.V., Istomin, A.A., Zhukovskaya, A.F., and Kukla, S.P., The antioxidant system of the Gray’s mussels Crenomytilus grayanus (Dunker, 1853) and the Japanese scallop Mizuhopecten yessoensis (Jay, 1857) (Mollusca: Bivalvia), Russ. J. Mar. Biol., 2016, vol. 42, no. 6, pp. 489−494.

    Article  CAS  Google Scholar 

  3. Vashanov, G.A. and Kaverin, N.N., The relationship between the main antioxidant blood systems of calves of different ages, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2009, no. 1, pp. 58–61.

  4. Girin, S.V., Modification of method of determination of catalase activity in biological substrates, Lab. Diagn., 1999, no. 4, pp. 45–46.

  5. Goromosova, S.A. and Shapiro, A.Z., Osnovnye cherty biokhimii energeticheskogo obmena midii (The Main Features of the Biochemistry of Mussels’ Energy Metabolism), Moscow: Legkaya i Pishchevaya Promyshlennost’, 1984.

  6. Gostyukhina, O.L. and Andreenko, T.I., The peculiarities of the interrelation of antioxidant defense components and the role of low molecular antioxidants in the energy supply in the tissues of Anadara kagoshimensis (Tokunaga, 1906) (Bivalvia: Arcidae), Biol. Morya (Vladivostok), 2015, vol. 41, no. 4, pp. 279–284.

    Google Scholar 

  7. Gostyukhina, O.L., Comparative characteristics of the antioxidant glutathione complex in the Black Sea molluscs Mytilus galloprovincialis Lam. and Anadara inaequivalvis Br., J. Evol. Biochem. Physiol., 2013, vol. 49, no. 1, pp. 59–65.

  8. Gostyukhina, O.L., Soldatov, A.A., Golovina, I.V., and Borodina, A.V., Content of carotenoids and the state of tissue antioxidant enzymatic complex in bivalve mollusc Anadara inaequivalvis Br., J. Evol. Biochem. Physiol., 2013, vol. 49, no. 3, pp. 309–315.

    Article  CAS  Google Scholar 

  9. Istomina, A.A., Dovzhenko, N.V., and Chelomin, V.P., Antioxidant defenses during anoxia and aerobic recovery in marine bivalvia Scapharca broughtoni, Vestn. Mosk. Gos. Obl. Univ., Ser.: Estestv. Nauki, 2010, no. 4, pp. 39–43.

  10. Kolb, V.G. and Kamyshnikov, V.S., Klinicheskaya biokhimiya: Posobie dlya vrachei-laborantov (Clinical Biochemistry: Manual for Laboratory Physicians), Minsk: Belarus’, 1976.

  11. Lukyanova, L.D., Kirova, Yu.I., and Sukoyan, G.V., Novel approaches to the understandingof signaling mechanisms of adaptation to hypoxia and its role in the systemic regulation of the body, Patogenez, 2011, vol. 9, no. 3, pp. 4–14.

    Google Scholar 

  12. Menshikov, V.V., Laboratornye metody issledovaniya v klinike: spravochnik (Laboratory Methods in Clinics: A Reference Book), Moscow: Meditsina, 1987.

  13. Men’shchikova, E.B. and Zenkov, N.K., Antioxidants and inhibitors of radical oxidative processes, Usp. Sovr. Biol., 1993, vol. 113, no. 4, pp. 442–455.

    Google Scholar 

  14. Men’shchikova, E.B., Lankin, V.Z., Zenkov, N.K., et al., Okislitel’nyi stress. Prooksidanty i antioksidanty (Oxidative Stress. Prooxidants and Antioxidants), Moscow: Slovo, 2006.

  15. Zaika, V.E., Valovaya, N.A., Povchun, A.S., and Revkov, N.K., Mitilidy Chernogo Morya (Mytilids of the Black Sea), Zaika, V.E., Ed., Kiev: Naukova Dumka, 1990.

    Google Scholar 

  16. Olifirenko, A.B., Conditions of settlings formation of bivalves Anadara broughtoni in Peter the Great Bay (Japan Sea), Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2007, vol. 149, pp. 122–137.

    Google Scholar 

  17. Pereslegina, I.A., The activity of antioxidant enzymes in the saliva of healthy children, Lab. Delo, 1989, no. 11, pp. 20–23.

  18. Putilina, F.E., Determination of reduced glutathione content in tissues, in Metody biokhimicheskikh issledovanii (Methods of Biochemical Research), Leningrad: Leningrad. Gos. Univ., 1982, pp. 183–186.

  19. Revkov, N.K. and Scherban, S.A., The biology of the bivalve Anadara kagoshimensis in the Black Sea, Ekosistemy, 2017, vol. 9, pp. 47–56.

    Google Scholar 

  20. Severin, E.S., Aleinikova, T.L., Osipov, E.V., and Silayeva, S.A., Biologicheskaya khimiya (Biological Chemistry), Moscow: Med. Inf. Agentstvo, 2008.

  21. Soldatov, A.A., Andreenko, T.I., and Golovina, I.V., Features of the organization of tissue metabolism in the bivalve invader Anadara inaequivalvis Bruguiere, Dopovidi Nats. Akad. Nauk Ukr., 2008, no. 4, pp. 161–165.

  22. Soldatov, A.A., Andreenko, T.I., Golovina, I.V., and Stolbov, A.Ya., Peculiarities of organization of tissue metabolism in mollusks with different tolerance to external hypoxia, J. Evol. Biochem. Physiol., 2010, vol. 46, no. 4, p. 341–349.

    Article  CAS  Google Scholar 

  23. Soldatov, A.A., Gostyukhina, O.L., and Golovina, I.V., Functional states of antioxidant enzymatic complex of tissues Mytilus galloprovincialis Lam. under conditions of oxidative stress, J. Evol. Biochem. Physiol., 2014, vol. 50, no. 3, pp. 206–214.

    Article  CAS  Google Scholar 

  24. Usenko, L.V., Muslin, V.P., Mosentsev, N.F., and Mosentsev, N.N., The method of leveling stress-induced hyperglycemia in severe critical states, Med. Neotlozhnykh Sostoyanii, 2013, no. 1, no. 48, pp. 103–114. https://doi.org/10.22141/2224-0586.1.48.2013.90697

  25. Fokina, N.N., Nefedova, Z.A., and Nemova, N.N., Biochemical adaptations of marine bivalve mollusks to anoxia (Review), Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2011, no. 3, pp. 121–129.

  26. Hochachka, P.W. and Somero, G.N., Strategies of Biochemical Adaptation, Philadelphia, Penn.: Saunders, 1973.

    Google Scholar 

  27. Broom, M.J., The Biology and Culture of Marine Bivalve Molluscs of the Genus Anadara, ICLARM Studies and Reviews, no. 12, Manila, Philippines: Int. Center Living Aquat. Resour. Manage., 1985.

  28. Gostiukhina, O.L. and Golovina, I.V., Comparative analysis of antioxidant complex of the Black Sea mollusks Mytilus galloprovincialis, Anadara inaequivalvis and Crassostrea gigas, Hydrobiol. J., 2013, vol. 49, no. 3, pp. 77–84.

    Article  Google Scholar 

  29. Gostyukhina, O.L., Soldatov, A.A., Golovina, I.V., and Borodina, A.V., Content of carotenoids and the state of tissue antioxidant enzymatic complex in bivalve mollusc Anadara inaequivalvis Br., J. Evol. Biochem. Physiol., 2013, vol. 49, no. 3, pp. 309−315.

    Article  CAS  Google Scholar 

  30. De Zwaan, A., Cortesi, P., van den Thillart, G., et al., Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis, Mar. Biol., 1991, vol. 111, no. 3, pp. 343–351.

    Article  Google Scholar 

  31. De Zwaan, A., Babarro, J.M.F., Monari, M., and Cattani, O., Anoxic survival potential of bivalves: (arte) facts, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2002, vol. 131, no. 3, pp. 615–624.

    Article  Google Scholar 

  32. Doyotte, A., Cossu, C., Jacquin, M.-C., et al., Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus, Aquat. Toxicol., 1997, vol. 39, no. 2, pp. 93–110.

    Article  CAS  Google Scholar 

  33. Larade, K. and Storey, K.B., A profile of the metabolic responses to anoxia in marine invertebrates, in Cell and Molecular Responses to Stress, vol. 3: Sensing, Signalling and Cell Adaptation, Amsterdam: Elsevier, 2002, pp. 27–46.

  34. Livingstone, D.R., Origins and evolution of pathways of anaerobic metabolism in the animal kingdom, Am. Zool., 1991, vol. 31, pp. 522–534.

    Article  CAS  Google Scholar 

  35. Livingstone, D.R., Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms, Mar. Pollut. Bull., 2001, vol. 42, no. 8, pp. 656–666.

    Article  CAS  PubMed  Google Scholar 

  36. Mommsen, Th.P., French, C.J., and Hochachka, P.W., Sites and patterns of protein and amino acid utilization during spawning migration of salmon, Can. J. Zool., 1980, vol. 58, pp. 1785–1799.

    Article  CAS  Google Scholar 

  37. Moon, T.W., Adaptation, constraint, and the function of the gluconeogenic pathway, Can. J. Zool., 1988, vol. 66, pp. 1059–1068.

    Article  CAS  Google Scholar 

  38. Mota-Rojas, D., Orozco-Gregorio, H., Villanueva-Garcia, D., et al., Foetal and neonatal energy metabolism in pigs and human: a review, Vet. Med., 2011, vol. 56, no. 5, pp. 215–225.

    Article  Google Scholar 

  39. Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, vol. 95, no. 1, pp. 351–358.

    Article  CAS  Google Scholar 

  40. Patel, B., Chandy, J.P., and Patel, S., Effect of mercury, selenium and glutathione on sulphydryl levels and glutathione reductase in blood clam Anadara granosa L., Indian J. Mar. Sci., 1990, vol. 19, pp. 187–190.

    CAS  Google Scholar 

  41. Regoli, F. and Principato, G., Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers, Aquat. Toxicol., 1995, vol. 31, pp. 143–164.

    Article  CAS  Google Scholar 

  42. Shulman, G.E., Metabolic strategy in pelagic squid of genus Sthenoteuthis (Ommastrephidae) as the basis of high abundance and productivity: an overview of the soviet investigations, Bull. Mar. Sci., 2002, vol. 71, no. 2, pp. 815–836.

    Google Scholar 

  43. Soldatov, A.A., Gostyukhina, O.L., Borodina, A.V., and Golovina, I.V., Glutathione antioxidant complex and carotenoid composition in tissues of the bivalve mollusk Anadara kagoshimensis, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 4, pp. 289–297.

    Article  CAS  Google Scholar 

  44. Taylor, M.A., Maher, A.W., and Ubrihien, P.R., Mortality, condition index and cellular responses of Anadara trapezia to combined salinity and temperature stress, J. Exp. Mar. Biol. Ecol., 2017, vol. 497, pp. 172–179.

    Article  CAS  Google Scholar 

  45. Sivaramakrishna, B. and Radhakrishnaiah, K., Comparative account on carbohydrate metabolism of freshwater mollusks Pila globosa and Lamellidens marginalis exposed to mercury toxicity, in Recent Advances in Ecobiological Research, New Delhi: A.P.H. Publ. Corp., 1997, pp. 489–504.

    Google Scholar 

  46. Vaquer-Sunyer, R. and Duarte, C.M., Thresholds of hypoxia for marine biodiversity, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 40, pp. 15452–15457.

    Article  PubMed  PubMed Central  Google Scholar 

  47. van Waarde, A., Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production, Comp. Biochem. Physiol., Part B: Comp. Biochem., 1988, vol. 91B, no. 2, pp. 207–228.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Gostyukhina.

Additional information

Translated by I. Barsegova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gostyukhina, O.L., Andreenko, T.I. Tissue Metabolism and the State of the Antioxidant Complex in the Black Sea Mollusks Anadara kagoshimensis (Tokunaga, 1906) and Mytilus galloprovincialis Lamarck, 1819 with Different Tolerances to Oxidative Stress. Russ J Mar Biol 45, 211–220 (2019). https://doi.org/10.1134/S1063074019030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074019030039

Keywords:

Navigation