Skip to main content
Log in

Numerical Study of the Evolution of Disturbances Generated by Roughness Elements in a Supersonic Boundary Layer on a Blunted Cone

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of direct numerical simulations of the roughness-induced development of instability and transition to turbulence in a supersonic boundary layer on a blunted cone for the free-stream Mach number M = 5.95 are presented. The flow parameters and model geometry are consistent with the conditions of the experiments performed in the study. The following roughness types are considered: random distributed roughness, isolated roughness elements of different shapes, and a group of regularly arranged roughness elements. The processes of the instability development and transition for different roughness types are compared, and possible mechanisms of the roughness influence on the stability of boundary layers on blunt bodies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Schneider, “Hypersonic Laminar-Turbulent Transition on Circular Cones and Scramjet Forebodies,” Progr. Aerospace Sci. 40 (1/2), 1–50 (2004).

    Article  ADS  Google Scholar 

  2. K. Stetson, E. Thompson, J. Donaldson, and L. Siler, “Laminar Boundary Layer Stability Experiments on a Cone at Mach 8. Pt 2. Blunt Cone,” AIAA Paper No. 84-0006 (1984).

    Google Scholar 

  3. A. A. Maslov, A. N. Shiplyuk, D. A. Bountin, and A. A. Sidorenko, “Mach 6 Boundary-Layer Stability Experiments on Sharp and Blunted Cones,” J. Spacecraft Rockets 43 (1), 71–76 (2006).

    Article  ADS  Google Scholar 

  4. E. A. Aleksandrova, A. V. Novikov, S. V. Utyuzhnikov, and A. V. Fedorov, “Experimental Study of the Laminar-Turbulent Transition on a Blunt Cone,” Prikl. Mekh. Tekh. Fiz. 55 (3), 5–16 (2014).[J. Appl. Mech. Tech. Phys. 55 (3), 375–385 (2014).

    Google Scholar 

  5. X. Li, D. Fu, and Y. Ma, “Direct Numerical Simulation of Hypersonic Boundary-Layer Transition over a Blunt Cone,” AIAA J. 46 (11), 2899–2913 (2008).

    Article  ADS  Google Scholar 

  6. X. Li, D. Fu, and Y. Ma, “Direct Numerical Simulation of Hypersonic Boundary Layer Transition over a Blunt Cone with a Small Angle of Attack,” Phys. Fluids 22 (2), 025105 (2010).

    Article  ADS  MATH  Google Scholar 

  7. K. Kara, P. Balakumar, and O. A. Kandil, “Effect of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability over Cones,” AIAA J. 49 (12), 2593–2606 (2011).

    Article  ADS  Google Scholar 

  8. E. Reshotko and A. Tumin, “The Blunt Body Paradox—a Case for Transient Growth,” in Laminar-Turbulent Transition: Proc. of the IUTAM Symp., Sedona (USA), September 13–17, 1999 (Springer, Berlin-Heidelberg, 2000), pp. 403–408.

    Chapter  Google Scholar 

  9. S. Hein, A. Theiss, A. di Giovanni, et al., “Numerical Investigation of Roughness Effects on Transition on Spherical Capsules,” AIAA Paper No. 2018-0058 (2018).

    Google Scholar 

  10. S. P. Schneider, “Effects of Roughness on Hypersonic Boundary-Layer Transition,” J. Spacecraft Rockets 45 (2), 193–209 (2008).

    Article  ADS  Google Scholar 

  11. S. P. Schneider, “Summary of Hypersonic Boundary-Layer Transition Experiments on Blunt Bodies with Roughness,” J. Spacecraft Rockets 45 (6), 1090–1105 (2008).

    Article  ADS  Google Scholar 

  12. B. M. Wheaton and S. P. Schneider, “Roughness-Induced Instability in a Hypersonic Laminar Boundary Layer,” AIAA J. 50 (6), 1245–1256 (2012).

    Article  ADS  Google Scholar 

  13. F. Avalone, F. F. J. Schrijer, and G. Cardone, “Infrared Thermography of Transition due to Isolated Roughness Elements in Hypersonic Flows,” Phys. Fluids 28 (2), 024106 (2016).

    Article  ADS  Google Scholar 

  14. M. Choudhari, A. Norris, F. Li, et al., “Wake Instabilities behind Discrete Roughness Elements in High Speed Boundary Layers,” AIAA Paper No. 2013-0081 (2013).

    Google Scholar 

  15. P. S. Iyer and K. Mahesh, “High-Speed Boundary-Layer Transition Induced by a Discrete Roughness Element,” J. Fluid Mech. 729, 524–562 (2013).

    Google Scholar 

  16. P. K. Subbareddy, M. D. Bartkowicz, and G. V. Candler, “Direct Numerical Simulation of High-Speed Transition Due to an Isolated Roughness Element,” J. Fluid Mech. 748, 848–878 (2014).

    Google Scholar 

  17. H. B. E. Kurz and M. J. Kloker, “Mechanisms of Flow Tripping by Discrete Roughness Elements in a Swept-Wing Boundary Layer,” J. Fluid Mech. 796, 158–194 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. D. V. Khotyanovsky and A. N. Kudryavtsev, “Direct Numerical Simulation of the Transition to Turbulence in a Supersonic Boundary Layer on Smooth and Rough Surfaces,” Prikl. Mekh. Tekh. Fiz. 58 (5), 80–92 (2017).[J. Appl. Mech. Tech. Phys. 58(5), 826–836 (2017)..

    MathSciNet  Google Scholar 

  19. A. di Giovanni and C. Stemmer, “Cross-Flow-Type Breakdown Induced by Distributed Roughness in the Boundary Layer of a Hypersonic Capsule Configuration,” J. Fluid Mech. 856, 470–503 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. Bountin, Yu. Gromyko, P. Polivanov, et al., “Effect of Roughness of the Blunted Cone Nose-Tip on Laminar-Turbulent Transition,” AIP Conf. Proc. 1770, 030064 (2016).

    Google Scholar 

  21. D. A. Bountin, Yu. V. Gromyko, A. A. Maslov, et al., “Effect of the Surface Roughness on Blunt Cone Forebody on the Position of Laminar-Turbulent Transition,” Teplofiz. Aeromekh. 23 (5), 655–664 (2016).[Thermophys. Aeromech. 23 (5), 629–638 (2016)..

    Google Scholar 

  22. S. V. Kirilovskiy and T. V. Poplavskaya, “On the Influence of a Single Roughness Element on the Flow in Supersonic Boundary Layer on a Blunted Cone,” Teplofiz. Aeromekh. 23 (6), 971–974 (2016).[Thermophys. Aeromech. 23 (6), 933–936 (2016).

    Google Scholar 

  23. P. A. Polivanov, Yu. V. Gromyko, A. A. Sidorenko, and A. A. Maslov, “Turbulization of the Wake behind a Single Roughness Element on a Blunted Body at a Hypersonic Mach number,” Prikl. Mekh. Tekh. Fiz. 58 (5), 102–110 (2017).[J. Appl. Mech. Tech. Phys. 58 (5), 845–852 (2017).

    Google Scholar 

  24. Yu. Gromyko, D. Bountin, P. Polivanov, et al., “The Effect of Roughness of Blunted Nose of Cone on the Development of Disturbances and Laminar-Turbulent Transition in a Hypersonic Boundary Layer,” AIP Conf. Proc. 1893, 030148 (2017).

    Google Scholar 

  25. A. N. Kudryavtsev, T. V. Poplavskaya, and D. V. Khotyanovsky, “Application of High-Order Schemes for Modeling Unsteady Supersonic Flows,” Mat. Model. 19 (7), 39–55 (2007).

    MathSciNet  MATH  Google Scholar 

  26. C. B. Laney, Computational Gasdynamics (Cambridge University Press, Cambridge, 1998).

    Book  MATH  Google Scholar 

  27. P. Batten, N. Clarke, C. Lambert, and D. M. Causon, “On the Choice of Wavespeeds for the HLLC Riemann Solver,” SIAM J. Sci. Comput. 18 (6), 1553–1570 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. P. Borisov, D. A. Bountin, Yu. V. Gromyko, et al., “Experimental and Numerical Investigation of Development of Disturbances in the Boundary Layer on Sharp and Blunted Cone,” AIP Conf. Proc. 1770, 030057 (2016).

    Google Scholar 

  29. M. Lesieur, O. Metais, and P. Comte, Large-Eddy Simulations of Turbulence (Cambridge University Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  30. C.-L. Chang and M. M. Choudhari, “Hypersonic Viscous Flow over Large Roughness Elements,” Theor. Comput. Fluid Dynamics 25, 85–104 (2011).

    Article  ADS  MATH  Google Scholar 

  31. P. M. Danehy, A. P. Garcia, S. Borg, et al., “Fluorescence Visualization of Hypersonic Flow past Triangular and Rectangular Boundary-Layer Trips,” AIAA Paper No. 2007-0536 (2007).

    Google Scholar 

  32. S. A. Craig and W. S. Saric, “Crossffow Instability in a Hypersonic Boundary Layer,” J. Fluid Mech. 808, 224–244 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Khotyanovsky.

Additional information

Original Russian Text © D.V. Khotyanovsky, S.V. Kirilovskiy, T.V. Poplavskaya, A.N. Kudryavtsev.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 3, pp. 45–59, May–June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khotyanovsky, D.V., Kirilovskiy, S.V., Poplavskaya, T.V. et al. Numerical Study of the Evolution of Disturbances Generated by Roughness Elements in a Supersonic Boundary Layer on a Blunted Cone. J Appl Mech Tech Phy 60, 438–450 (2019). https://doi.org/10.1134/S0021894419030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419030052

Keywords

Navigation