Skip to main content
Log in

Effect of Different Flows on the Shear Branding of a Liquid with a Non-Monotonic Flow Curve

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A Couette flow of liquid, described by a modified Vinogradov–Pokrovskii model with a non-monotonic flow curve is simulated. It is shown that the analytical solution of the stationary problem has an infinite set of solutions. The time-dependent problem is numerically simulated in the assumption that the components of the structural tensor take values corresponding to a current change in the velocity field. It is determined that the time it takes for the plate velocity to reach a given value significantly affects the velocity profile and the dependence of tangential stresses on an apparent shear rate. It is shown that, as this time decreases, the shear banding of the flow is observed not only for shear rates corresponding to the downward branch of the flow curve, but also in the entire domain of its ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Divoux, M. A. Fardin, S. Manneville, and S. Lerouge, “Shear Banding of Complex Fluids,” Ann. Rev. Fluid Mech. 48, 81–103 (2016); DOI: https://doi.org/10.1146/annurev-fluid-122414-034416.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. P. D. Olmsted, “Perspectives on Shear Banding in Complex Fluids,” Rheol. Acta. 47 (3), 283–300 (2008); DOI: https://doi.org/10.1007/s00397-008-0260-9.

    Article  Google Scholar 

  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

    Google Scholar 

  4. D. W. Mead, R. G. Larson, and M. Doi, “A Molecular Theory for Fast Flows of Entangled Polymers,” Macro-molecules 31 (22), 7895–7914 (1998); DOI: https://doi.org/10.1021/ma980127x.

    Article  ADS  Google Scholar 

  5. P. Tapadia and S.-Q. Wang, “Nonlinear Flow Behavior of Entangled Polymer Solutions: Yieldlike Entanglement-Disentanglement Transition,” Macromolecules 37 (24), 9083–9095 (2004); DOI: https://doi.org/10.1021/ma0490855.

    Article  ADS  Google Scholar 

  6. P. Tapadia and S.-Q. Wang, “Direct Visualization of Continuous Simple Shear in Non-Newtonian Polymeric Fluids,” Phys. Rev. Lett. 96 (1), 016001 (2006); DOI: https://doi.org/10.1103/PhysRevLett.96.016001.

    Article  ADS  Google Scholar 

  7. P. E. Boukany and S.-Q. Wang, “Shear Banding or Not in Entangled DNA Solutions,” Macromolecules 43, 6950–6952 (2010); DOI: https://doi.org/10.1021/ma101267b.

    Article  ADS  Google Scholar 

  8. Y. Hu, “Steady-State Shear Banding in Entangled Polymers?” J. Rheol. 54 (6), 1307–1323 (2010); DOI: https://doi.org/10.1122/1.3494134.

    Article  ADS  Google Scholar 

  9. G. C. Georgiou and D. Vlassopoulos, “On the Stability of the Simple Shear Flow of a Johnson–Segalman Fluid,” J. Non-Newtonian Fluid Mech. 75, 77–97 (1998).

    Article  MATH  Google Scholar 

  10. P. Espanol, X. F. Yuan, and R. C. Ball, “Shear Banding Flow in the Johnson–Segalman Fluid,” J. Non-Newtonian Fluid Mech. 65, 93–109 (1996).

    Article  Google Scholar 

  11. M. Cromer, G. H. Fredrickson, and L. G. Leal, “A Steady of Shear Banding in Polymer Solutions,” Phys. Fluids 26, 063101 (2014); DOI: https://doi.org/10.1063/1.4878842.

    Article  MATH  ADS  Google Scholar 

  12. M. A. Makarova, A. S. Gusev, G. V. Pyshnograi, and A. A. Rybakov, “Nonlinear Theory of Viscoelasticity of Linear Polymers,” Elektron. Fiz.-Tekh. Zh. 2, 1–54 (2007).

    Google Scholar 

  13. I. E. Golovicheva, S. A. Zinovich, and G. V. Pyshnograi, “Effect of the Molecular Mass on the Shear and Longitudinal Viscosity of Linear Polymers,” Prikl. Mekh. Tekh. Fiz. 41 (2), 154–160 (2000) [J. Appl. Mech. Tech. Phys. 41 (2), 347–352 (2000)].

    MATH  Google Scholar 

  14. J. L. Kuznetsova and O. I. Skulskiy, “Verification of Mesoscopic Models of Viscoelastic Fluids with a Non-Monotonic Flow Curve,” Korea-Australia Rheol. J. 28, 33–40 (2016); DOI: https://doi.org/10.1007/s13367-016-0003-x.

    Article  Google Scholar 

  15. J. L. Kuznetsova, O. I. Skul’skiy, and G. V. Pyshnograi, “Pressure Driven Flow of a Nonlinear Viscoelastic Fluid in a Plane Channel,” Vychisl. Mekh. Sploshn. Sred 3 (2), 55–69 (2010); DOI: https://doi.org/10.7242/1999-6691/2010.3.2.17.

    Google Scholar 

  16. Yu. L. Kuznetsova and O. I. Skul’skiy, “Shear Flow of Nonlinear Elastic-Viscous Fluid,” Vestn. Perm. Univ., Matematika. Mekhanika. Informatika 8 (4), 18–26 (2011).

    Google Scholar 

  17. Yu. L. Kuznetsova and O. I. Skul’skiy, “Shear Banding of the Fluid with a Nonmonotonic Dependence of Flow Stress upon Strain Rate,” Vychisl. Mekh. Sploshn. Sred 11 (1), 55–69 (2018); DOI: https://doi.org/10.7242/1999-6691/2018.11.1.6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. L. Kuznetsova or O. I. Skul’skiy.

Additional information

Original Russian Text © Yu.L. Kuznetsova, O.I. Skul’skiy.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 1, pp. 27–36, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Y.L., Skul’skiy, O.I. Effect of Different Flows on the Shear Branding of a Liquid with a Non-Monotonic Flow Curve. J Appl Mech Tech Phy 60, 22–30 (2019). https://doi.org/10.1134/S0021894419010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419010048

Keywords

Navigation