Skip to main content
Log in

Properties of an Al/(Al2O3+TiB2+ZrB2) hybrid composite manufactured by powder metallurgy and hot pressing

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The properties and microstructure of an Al/(Al2O3 + TiB2 + ZrB2) hybrid composite made by using hot pressing of aluminum combined with different amounts of TiB2, ZrB2, and Al2O3 powders are studied. The mechanical properties of the composites are investigated on the basis of microhardness and compression tests. The results show that the microstructure of the composites is uniform and the particles are well distributed in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Tjong, G. S. Wang, and Y.-W. Mai, “High Cycle Fatigue Response of in situ Al-Based Composites Containing TiB2 and Al2O3 Submicron Particles,” Compos. Sci. Technol. 65 (10), 1537–1546 (2005).

    Article  Google Scholar 

  2. M. Adamiak, “Selected Properties of the Aluminum Alloy Base Composites Reinforced with Intermetallic Particles,” J. Achievements Materials Manufactur. Eng. 14 (1/2), 43–47 (2006).

    Google Scholar 

  3. Shy-Wen Lai and D. D. L. Chung, “Superior High Temperature Resistance of Aluminium Nitride Particle Reinforced Aluminium Compared to Silicon Carbide or Alumina Particle Reinforced Aluminium,” J. Materials Sci. 29 (23), 6181–6198 (1994).

    Article  ADS  Google Scholar 

  4. M. N. Wahab, A. R. Daud, and M. J. Ghazali, “Preparation and Characterization of Stir Cast Aluminium Nitride Reinforced Aluminium Metal Matrix Composites,” Int. J. Mech. Materials Engng. 4 (2), 115–117 (2009).

    Google Scholar 

  5. M. Chedru, J. L. Chermant, and J. Vicens, “Interfacial Reaction between Aluminium Nitride Reinforcement Particles and Aluminium Alloy in Al–AlN Metal Matrix Composite,” J. Materials Sci. Lett. 20, 1577–1583 (2001).

    Article  Google Scholar 

  6. I. Dinaharan and N. Murugan, “Dry Sliding Wear Behavior of AA6061/ZrB2 in situ Composite,” Trans. Nonferrous Metals. Soc. China 22, 810–818 (2012).

    Article  Google Scholar 

  7. J. B. Fogagnolo, M. H. Robert, E. M. Ruiz-Navas, and J. M. Torralba, “6061 Al Reinforced with Zirconium Diboride Particles Processed by Conventional Powder Metallurgy and Mechanical Alloying,” J. Materials Sci. 39, 127–132 (2004).

    Article  ADS  Google Scholar 

  8. M. Singla, D. Deepak Dwivedi, L. Singh, and V. Chawla, “Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite,” J. Minerals Materials Characteriz. Eng. 8 (6), 455–467 (2009).

    Article  Google Scholar 

  9. E. Hong, B. Kaplin, T. You, et al., “Tribological Properties of Copper Based Composites Reinforced with Tungsten Carbide Particles,” Wear 270, 591–597 (2011).

    Article  Google Scholar 

  10. N. P. Bansal, Handbook of Ceramic Composites. Norwell (Kluwer, 2005), pp. 198, 203.

    Book  Google Scholar 

  11. D. Zhao, X. Liu, Y. Liu, and X. Bian, “In situ Preparation of Al Matrix Composites Reinforced by TiB2 Particles and Sub-Micron ZrB2,” J. Mater. Sci. 40 (16), 4365–4368 (2005).

    Article  ADS  Google Scholar 

  12. C. F. Feng and L. Froyen, “In situ P/M Al/(ZrB2+Al2O3) MMCs: Processing, Microstructure and Mechanical Characterization,” Acta Mater. 47 (18), 4571–4583 (1999).

    Article  Google Scholar 

  13. A. Wlodarczyk-Fligier, L. A. Dobrazanski, M. Kremzer, and M. Adamiak, “Manufacturing of Aluminum Matrix Composite Materials Reinforced by Al2O3 Particles,” J. Achievements Materials Manufactur. Eng. 27 (1), 99–102 (2008).

    Google Scholar 

  14. F. Farhadinia and S. Sedghi, “Fabrication of Al2O3/(ZrB2 + TiB2) Composite using MACS and Microwaves,” Metall. Materials Trans. A 45, 3125–3129 (2014).

    Article  ADS  Google Scholar 

  15. M. Rahimian, N. Parvin, and N. Ehsani, “The Effect of Production Parameters on Microstructure and Wear Resistance of Powder Metallurgy Al–Al2O3 Composite,” Materials Design 32 (2), 1031–1038 (2011).

    Article  Google Scholar 

  16. S. Panda, K. Dash, and B. C. Ray, “Processing and Properties of Cu Based Micro and Nano Composites,” Bull. Materials Sci. 37 (2), 227–238 (2014).

    Article  Google Scholar 

  17. J. W. Kaczmar, K. Granat, E. Grodzka, and A. Kurzawa, “Tribological Properties of Cu Based Composite Materials Strengthened with Al2O3 Particles,” Arch. Foundry Eng. 12 (2), 33–36 (2012).

    Google Scholar 

  18. G. Abouelmagd, “Hot Deformation and Wear Resistance of P/M Aluminum Metal Matrix Composites,” Materials Proc. Technol. 155/156, 1395–1401 (2004).

    Article  Google Scholar 

  19. A. A. Mazen and A. Y. Ahmed, “Mechanical Behavior of Al–Al2O3 MMC Manufactured by PM Techniques. 1. Scheme I Processing Parameters,” J. Materials Eng. Performance 7 (3), 393–401 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Farhadinia.

Additional information

Original Russian Text © F. Farhadinia, A. Sedghi, M.T. Nooghani.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 3, pp. 90–97, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadinia, F., Sedghi, A. & Nooghani, M.T. Properties of an Al/(Al2O3+TiB2+ZrB2) hybrid composite manufactured by powder metallurgy and hot pressing. J Appl Mech Tech Phy 58, 454–460 (2017). https://doi.org/10.1134/S0021894417030105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417030105

Keywords

Navigation