Skip to main content
Log in

Theoretical Investigation of the Lead-Free K2InBiX6 (X = Cl, Br) Double Perovskite Compounds Using Ab Initio Calculation

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

In this study, we employ the full potential linearized augmented plane wave technique based on density functional theory applied in the WIEN2k code to examine the structural, elastic, electrical, optical, and thermoelectric properties of double perovskite K2InBiX6 (X = Cl, Br) compounds. Tolerance factor, formation energy, and phonon dispersion all confirm structural stability. Using the exchange correlation generalized gradients approximation, and modified Becke–Johnson, the electronic characteristics have been calculated. The calculated bandgaps using TB-mBJ potential for K2InBiX6 (X = Cl, Br) compounds are 1.81 and 1.29 eV, respectively, indicating that the compounds under study are semiconductors. Both materials exhibit thermodynamic stability, as evidenced by an analysis of their elastic and mechanical properties. We estimated the optical properties in terms of the real and imaginary parts of the dielectric function, refractive index, reflectivity and absorption coefficient reflecting their application in photovoltaic and optoelectronic devices. In the temperature range 200–800 K, the thermoelectric properties of the compounds, such as electrical conductivity, Seebeck coefficient, thermal conductivity, and power factor, have been analyzed. The compound has a positive Seebeck coefficient in this temperature range, indicating that holes are the majority charge carriers and that the material is p-type. The high-power factor of studied compounds suggests its potential application in thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. H. Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir, and M. Mohamad, Renewable Sustainable Energy Rev. 30, 337 (2014).

    Article  Google Scholar 

  2. X. F. Zheng, C. X. Liu, Y. Y. Yan, and Q. Wang, Renewable Sustainable Energy Rev. 32, 486 (2014).

    Article  Google Scholar 

  3. H. J. Goldsmid and H. J. Goldsmid, The Physics of Thermoelectric Energy Conversion (Morgan and Claypool, San Rafael, CA, 2017).

    Book  Google Scholar 

  4. T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  5. N. Mingo, Appl. Phys. Lett. 84, 2652 (2004).

    Article  Google Scholar 

  6. A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Mater. Sci. Eng. R 97, 1 (2015).

    Article  Google Scholar 

  7. A. V. Andrianov, A. N. Aleshin, and L. B. Matyushkin, JETP Lett. 109, 28 (2019).

    Article  Google Scholar 

  8. M. Houari, B. Bouadjemi, A. Abbad, T. Lantri, S. Haid, W. Benstaali, M. Matougui, and S. Bentata, JETP Lett. 112, 364 (2020).

    Article  Google Scholar 

  9. A. V. Nemtsev, V. S. Zhandun, and V. I. Zinenko, J. Exp. Theor. Phys. 126, 497 (2018).

    Article  Google Scholar 

  10. S. Dahbi, N. Tahiri, O. El Bounagui, and H. Ez-Zahraouy, Chem. Phys. 544, 111105 (2021).

  11. T. Maiti, M. Saxena, and P. Roy, J. Mater. Res. 34, 107 (2019).

    Article  Google Scholar 

  12. K. C. Bhamu, A. Soni, and J. Sahariya, Sol. Energy 162, 336 (2018).

    Article  Google Scholar 

  13. L. Yan, L. Zhao, C. Zhao, and S. Lin, Appl. Therm. Eng. 215, 119024 (2022).

  14. D. S. Gets, E. Y. Tiguntseva, A. S. Berestennikov, T. G. Lyashenko, A. P. Pushkarev, S. V. Makarov, and A. A. Zakhidov, JETP Lett. 107, 742 (2018).

    Article  Google Scholar 

  15. E. Haque and M. A. Hossain, J. Alloys Compd. 748, 63 (2018).

    Article  Google Scholar 

  16. V. K. Ravi, N. Singhal, and A. Nag, J. Mater. Chem. A 6, 21666 (2018).

    Article  Google Scholar 

  17. N. A. Noor, M. W. Iqbal, T. Zelai, A. Mahmood, H. M. Shaikh, S. M. Ramay, and W. Al-Masry, J. Mater. Res. Technol. 13, 2491 (2021).

    Article  Google Scholar 

  18. G. Murtaza, T. Alshahrani, R. M. A. Khalil, Q. Mahmood, T. H. Flemban, H. Althib, and A. Laref, J. Solid State Chem. 297, 121988 (2021).

  19. X. Zhou, J. Jankowska, H. Dong, and O. V. Prezhdo, J. Energy Chem. 27, 637 (2018).

    Article  Google Scholar 

  20. W. Shi, T. Cai, Z. Wang, and O. Chen, J. Chem. Phys. 153, 141101 (2020).

  21. E. T. McClure, M. R. Ball, W. Windl, and P. M. Woodward, Chem. Mater. 28, 1348 (2016).

    Article  Google Scholar 

  22. F. Wei, Z. Deng, S. Sun, N. T. P. Hartono, H. L. Seng, T. Buonassisi, P. D. Bristowe, and A. K. Cheetham, Chem. Commun. 55, 3721 (2019).

    Article  Google Scholar 

  23. J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, and G. Niu, ACS Photon. 5, 398 (2018).

  24. S. Nazir, N. A. Noor, M. Manzoor, and A. Dahshan, Chem. Phys. Lett. 798, 139612 (2022).

  25. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

    Article  Google Scholar 

  26. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, WIEN2k (2001), p. 60.

  27. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  28. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).

  29. M. Jamal, M. Bilal, I. Ahmad, and S. Jalali-Asadabadi, J. Alloys Compd. 735, 569 (2018).

    Article  Google Scholar 

  30. J. Hafner, J. Comput. Chem. 29, 2044 (2008).

    Article  Google Scholar 

  31. G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  32. M. Luo, Y. Zhao, A. Yang, Q. Chen, X. Zhang, and J. Luo, Solid State Commun. 352, 114812 (2022).

  33. F. Aslam, H. Ullah, and M. Hassan, Mater. Sci. Eng. B 274, 115456 (2021).

  34. M. W. Iqbal, M. Manzoor, N. A. Noor, I. Rehman, N. Mushahid, S. Aftab, Y. M. Alanazi, H. Ullah, and A. M. Afzal, Sol. Energy 239, 234 (2022).

    Article  Google Scholar 

  35. I. Waller, Acta Crystallogr. 9, 837 (1956).

    Article  Google Scholar 

  36. S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    Article  Google Scholar 

  37. D. H. Chung and W. R. Buessem, J. Appl. Phys. 38, 2010 (1967).

    Article  Google Scholar 

  38. O. Anderson, E. Schreiber, and N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973).

    Google Scholar 

  39. S. Al-Qaisi, D. P. Rai, B. U. Haq, R. Ahmed, T. V. Vu, M. Khuili, S. A. Tahir, and H. H. Alhashim, Mater. Chem. Phys. 258, 123945 (2021).

  40. D. Behera, R. Sharma, H. Ullah, H. S. Waheed, and S. K. Mukherjee, J. Solid State Chem. 312, 123259 (2022).

  41. M. H. Cohen and F. S. Ham, J. Phys. Chem. Solids 16, 177 (1960).

    Article  Google Scholar 

  42. F. Aslam, B. Sabir, and M. Hassan, Appl. Phys. A 127, 1 (2021).

    Article  Google Scholar 

  43. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 45112 (2006).

    Article  Google Scholar 

  44. D. Bensaid, B. Doumi, and S. Ahmad, JETP Lett. 115, 539 (2022).

    Article  Google Scholar 

  45. D. Behera, M. Manzoor, M. W. Iqbal, S. Lakra, and S. K. Mukherjee, Comput. Condens. Matter 32, e00723 (2022).

  46. D. R. Penn, Phys. Rev. 128, 2093 (1962).

    Article  Google Scholar 

  47. M. Saeed, I. U. Haq, A. S. Saleemi, S. U. Rehman, B. U. Haq, A. R. Chaudhry, and I. Khan, J. Phys. Chem. Solids 160, 110302 (2022).

  48. W. Liu, H. S. Kim, Q. Jie, and Z. Ren, Scr. Mater. 111, 3 (2016).

    Article  Google Scholar 

  49. X. Zhang and L.-D. Zhao, J. Materiom. 1, 92 (2015).

  50. G. Wu and X. Yu, Eur. Phys. J. Plus 135, 1 (2020).

    Article  Google Scholar 

  51. M. S. Yaseen, G. Murtaza, and R. M. Arif Khalil, Opt. Quantum Electron. 51, 1 (2019).

    Article  Google Scholar 

  52. N. Stojanovic, D. H. S. Maithripala, J. M. Berg, and M. Holtz, Phys. Rev. B 82, 75418 (2010).

    Article  Google Scholar 

  53. M. Wolf, R. Hinterding, and A. Feldhoff, Entropy 21, 1058 (2019).

    Article  Google Scholar 

Download references

Funding

Debidatta Behera acknowledges the Birla Institute of Technology for the award of Institute Research Fellowship (IRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mukherjee.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, D., Mukherjee, S.K. Theoretical Investigation of the Lead-Free K2InBiX6 (X = Cl, Br) Double Perovskite Compounds Using Ab Initio Calculation. Jetp Lett. 116, 537–546 (2022). https://doi.org/10.1134/S0021364022601944

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601944

Navigation