Skip to main content
Log in

Generation and Application of Broadband Biphoton Fields (Brief Review)

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Biphoton fields obtained in spontaneous parametric down-conversion are among the main tools of modern quantum optics. Temporal correlations between photons in the pair play a key role; the broader the spectrum of the biphoton field, the stronger the correlations. Broadband biphoton fields and their main characteristics have been described in detail, their possible applications have been listed, and the main methods of their generation have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. That is, in a crystal with the single anisotropy axis of the refractive index, where the phase velocity of the extraordinary (subscript e) wave is higher than the phase velocity of the ordinary (subscript o) wave.

  2. In the case of the broadband pulsed pump, the shape of the distribution pω can differ from that shown in Fig. 2a. The distributions can have circular and elliptical shapes with the major axis in the direction where ωs = ωi [2732]. However, these cases are beyond the scope of this work.

REFERENCES

  1. V. A. Fock, Z. Phys 75, 622 (1932).

    Article  ADS  Google Scholar 

  2. P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).

    Article  ADS  Google Scholar 

  3. D. T. Pegg, R. Loudon, and P. L. Knight, Phys. Rev. A 33, 4085 (1986).

    Article  ADS  Google Scholar 

  4. A. V. Burlakov, M. V. Chekhova, D. N. Klyshko, S. P. Kulik, A. N. Penin, Y. H. Shih, and D. V. Strekalov, Phys. Rev. A 56, 3214 (1997).

    Article  ADS  Google Scholar 

  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75 (24), 4 (1995).

    Article  Google Scholar 

  6. Yu. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, Phys. Rev. Lett. 93, 230503 (2004).

  7. M. V. Chekhova, L. A. Krivitsky, S. P. Kulik, and G. A. Maslennikov, Phys. Rev. A 70, 053801 (2004).

  8. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 97, 023602 (2006).

  9. G. M. D’Ariano, P. Mataloni, and M. F. Sacchi, Phys. Rev. A 71, 062337 (2005).

  10. D. N. Klyshko, JETP Lett. 6, 23 (1967).

    ADS  Google Scholar 

  11. D. N. Klyshko, Photons and Nonlinear Optics (Nauka, Moscow, 1980; Gordon and Breach, New York, 1988).

  12. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, Chichester, 2002).

    Google Scholar 

  13. S. Shwartz, R. N. Coffee, J. M. Feldkamp, Y. Feng, J. B. Hastings, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 109, 013602 (2012).

  14. V. D. Sultanov, K. A. Kuznetsov, A. A. Leontyev, and G. Kh. Kitaeva, JETP Lett. 112, 269 (2020).

    Article  ADS  Google Scholar 

  15. P. A. Prudkovskii, JETP Lett. 114, 173 (2021).

    Article  ADS  Google Scholar 

  16. A. A. Leontyev, K. A. Kuznetsov, P. A. Prudkovskii, D. A. Safronenkov, and G. Kh. Kitaeva, JETP Lett. 114, 565 (2021).

    Article  ADS  Google Scholar 

  17. M. V. Chekhova, JETP Lett. 75, 225 (2002).

    Article  ADS  Google Scholar 

  18. A. V. Belinsky and D. N. Klyshko, Laser Phys. 4, 663 (1994).

    Google Scholar 

  19. E. Schmidt, Math. Ann. 65, 370 (1908).

    Article  MathSciNet  Google Scholar 

  20. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  21. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

    Article  ADS  Google Scholar 

  22. R. Grobe, K. Rzazewski, and J. H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 27, L503 (1994).

    Article  ADS  Google Scholar 

  23. M. V. Fedorov, M. A. Efremov, A. E. Kazakov, K. W. Chan, C. K. Law, and J. H. Eberly, Phys. Rev. A 69, 052117 (2004).

  24. M. V. Fedorov, M. A. Efremov, P. A. Volkov, and J. H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 39, S467 (2006).

    Article  ADS  Google Scholar 

  25. M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 99, 063901 (2007).

  26. G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, Europhys. Lett. 87, 64003 (2009).

    Article  ADS  Google Scholar 

  27. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).

  28. A. B. U’Ren, K. Banaszek, and I. A. Walmsley, Quantum Inform. Comput. 3, 480 (2003).

    Google Scholar 

  29. P. J. Mosley, C. Silberhorn, A. B. U’Ren, I. A. Walmsley, and M. G. Raymer, in Proceedings of the 2005 European Quantum Electronics Conference (IEEE Computer Soc., 2005), p. 268.

  30. M. Hendrych, M. Micuda, and J. P. Torres, Opt. Lett. 32, 2339 (2007).

    Article  ADS  Google Scholar 

  31. W. P. Grice, R. S. Bennink, D. S. Goodman, and A. T. Ryan, Phys. Rev. A 83 (2), 1 (2011).

    Article  Google Scholar 

  32. H. di Lorenzo Pires, F. M. G. J. Coppens, and M. P. van Exter, Phys. Rev. A 83 (3), 1 (2011).

    Article  Google Scholar 

  33. R. J. Glauber, Phys. Rev. Lett. 10 (3), 84 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  34. O. Jedrkiewicz, J.-L. Blanchet, E. Brambilla, P. di Trapani, and A. Gatti, Phys. Rev. Lett. 108, 253904 (2012).

  35. R. H. Brown and R. Q. Twiss, Philos. Mag. J. Sci. 45 (366), 663 (1954).

    Article  ADS  Google Scholar 

  36. I. Abram, R. K. Raj, J. L. Oudar, and G. Dolique, Phys. Rev. Lett. 57, 2516 (1986).

    Article  ADS  Google Scholar 

  37. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

    Article  ADS  Google Scholar 

  38. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011).

  39. T. Aichele, A. I. Lvovsky, and S. Schiller, Eur. Phys. J. D 18, 237 (2002).

    ADS  Google Scholar 

  40. G. Kh. Kitaeva, D. N. Klyshko, and I. V. Taubin, Sov. J. Quantum Electron. 12, 333 (1982).

    Article  ADS  Google Scholar 

  41. D. N. Klyshko and A. N. Penin, Sov. Phys. Usp. 30, 716 (1987).

    Article  ADS  Google Scholar 

  42. P.-J. Tsai and Y.-Ch. Chen, Quantum Sci. Technol. 3, 034005 (2018).

  43. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, Phys. Rev. Lett. 101, 190501 (2008).

  44. S. N. Molotkov, J. Exp. Theor. Phys. 130, 809 (2020).

    Article  ADS  Google Scholar 

  45. S. N. Molotkov, J. Exp. Theor. Phys. 133, 272 (2021).

    Article  ADS  Google Scholar 

  46. U. Vazirani and Th. Vidick, Commun. ACM 62 (4), 133 (2019).

    Article  Google Scholar 

  47. L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. van Meter, and M. D. Lukin, Phys. Rev. A 79, 032325 (2009).

  48. H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett. 85, 3313 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).

  50. D. Brus and C. Macchiavello, Phys. Rev. Lett. 88, 127901 (2002).

  51. F. Caruso, H. Bechmann-Pasquinucci, and C. Macchiavello, Phys. Rev. A 72, 032340 (2005).

  52. J. Roslund, R. M. de Araújo, Sh. Jiang, C. Fabre, and N. Treps, Nat. Photon. 8, 109 (2014).

    Article  ADS  Google Scholar 

  53. B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New J. Phys. 16, 033017 (2014).

  54. H. Ch. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express 16, 22099 (2008).

    Article  ADS  Google Scholar 

  55. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, New J. Phys. 11, 105001 (2009).

  56. I. Herbauts, B. Blauensteiner, A. Poppe, T. Jennewein, and H. Hübel, Opt. Express 23, 29013 (2013).

    Article  ADS  Google Scholar 

  57. J. M. Donohue, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 113, 163602 (2014).

  58. H.-S. Zhong, H. Wang, Y.-H. Deng, et al., Science (Washington, DC, U. S.) 370 (6523), 1460 (2020).

    Article  ADS  Google Scholar 

  59. H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. van den Nest, Nat. Phys. 5, 19 (2009).

    Article  Google Scholar 

  60. M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, Phys. Rev. Lett. 115, 020502 (2015).

  61. Sh. Yokoyama, R. Ukai, S. C. Armstrong, Ch. Sornphiphatphong, T. Kaji, Sh. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, Nat. Photon. 7, 982 (2013).

    Article  ADS  Google Scholar 

  62. M. Chen, N. C. Menicucci, and O. Pfister, Phys. Rev. Lett. 112, 120505 (2014).

  63. E. Knill, R. Laflamme, and G. J. Milburn, Nature (London, U.K.) 409 (6816), 46 (2001).

    Article  ADS  Google Scholar 

  64. V. Giovannetti, S. Lloyd, and L. Maccone, Nature (London, U.K.) 412 (6845), 417 (2001).

    Article  ADS  Google Scholar 

  65. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, Phys. Rev. Lett. 87, 117902 (2001).

  66. A. Valencia, G. Scarcelli, and Y. Shih, Appl. Phys. Lett. 85, 2655 (2004).

    Article  ADS  Google Scholar 

  67. R. Quan, R. Dong, Y. Zhai, F. Hou, X. Xiang, H. Zhou, Ch. Lv, Zh.Wang, L. You, T. Liu, and Sh. Zhang, Opt. Lett. 44, 614 (2019).

    Article  ADS  Google Scholar 

  68. R. Quan, R. Dong, X. Xiang, B. Li, T. Liu, and Sh. Zhang, Rev. Sci. Instrum. 91, 123109 (2020).

  69. V. Giovannetti, Science (Washington, DC, U. S.) 306 (5700), 1330 (2004).

    Article  ADS  Google Scholar 

  70. J. P. Dowling, Contemp. Phys. 49, 125 (2008).

    Article  ADS  Google Scholar 

  71. O. Varnavski and Th. Goodson, J. Am. Chem. Soc. 142, 12966 (2020).

    Article  Google Scholar 

  72. B. E. A. Saleh, B. M. Jost, H. B. Fei, and M. C. Teich, Phys. Rev. Lett. 80, 3483 (1998).

    Article  ADS  Google Scholar 

  73. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).

  74. F. Schlawin, K. E. Dorfman, and Sh. Mukamel, Acc. Chem. Res. 51, 2207 (2018).

    Article  Google Scholar 

  75. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 (2000).

    Article  ADS  Google Scholar 

  76. M. D’Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev. Lett. 87, 013602 (2001).

  77. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65 (5), 6 (2002).

    Article  Google Scholar 

  78. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).

  79. S. Kurimura, R. Okamoto, H. H. Lim, Sh. Takeuchi, N. Nishizawa, and M. Okano, Sci. Rep. 5 (1), 1 (2015).

    Google Scholar 

  80. S. M. Kolenderska, F. Vanholsbeeck, and P. Kolenderski, Opt. Express 28, 29576 (2020).

    Article  ADS  Google Scholar 

  81. P. Yepiz-Graciano, A. M. A. Martínez, D. Lopez-Mago, H. Cruz-Ramirez, and A. B. U’Ren, Photon. Res. 8, 1023 (2020).

    Article  Google Scholar 

  82. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography (Springer Int., Cham, 2015).

    Book  Google Scholar 

  83. M. Okano, R. Okamoto, A. Tanaka, Sh. Ishida, N. Nishizawa, and Sh. Takeuchi, Phys. Rev. A 88, 043845 (2013).

  84. D. Lopez-Mago and L. Novotny, Phys. Rev. A 86, 023820 (2012).

  85. C. Okoth, A. Cavanna, T. Santiago-Cruz, and M. V. Chekhova, Phys. Rev. Lett. 123, 263602 (2019).

  86. K. G. Katamadze and S. P. Kulik, in Proceedings of the International Conference on Micro- and Nano-Electronics 2016, Proc. SPIE 10224, 102242N (2016). https://doi.org/10.1117/12.2266937

  87. K. G. Katamadze, N. A. Borshchevskaya, I. V. Dyakonov, A. V. Paterova, and S. P. Kulik, Laser Phys. Lett. 10, 045203 (2013).

  88. K. G. Katamadze, Cand. Sci. (Phys. Math.) Dissertation (Mosc. State Univ., Mocsow, 2013).

  89. A. Pe’er, Y. Silberberg, B. Dayan, and A. A. Friesem, Phys. Rev. A 74, 053805 (2006).

  90. U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, and Q. Lin, Phys. Rev. Lett. 127, 183601 (2021).

  91. C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B 11, 2434 (1994).

    Article  ADS  Google Scholar 

  92. J. P. Torres, S. Carrasco, L. Torner, and E. W. van Stryland, Opt. Lett. 25, 1735 (2000).

    Article  ADS  Google Scholar 

  93. J. P. Torres, M. Hendrych, and A. Valencia, Adv. Opt. Photon. 2, 319 (2010).

    Article  Google Scholar 

  94. M. Hendrych, X. Shi, A. Valencia, and J. P. Torres, Phys. Rev. A 79 (2), 1 (2009).

    Article  Google Scholar 

  95. S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 70, 043817 (2004).

  96. S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, Phys. Rev. A 73, 063802 (2006).

  97. Y. M. Mikhailova, P. A. Volkov, and M. V. Fedorov, Phys. Rev. A 78, 062327 (2008).

  98. M.V Fedorov, Y. M. Mikhailova, and P. A. Volkov, J. Phys. B: At. Mol. Opt. Phys. 42, 175503 (2009).

  99. M. B. Nasr, G. di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Opt. Commun. 246, 521 (2005).

    Article  ADS  Google Scholar 

  100. M. Okano, R. Okamoto, A. Tanaka, Sh. Subashchandran, and Sh. Takeuchi, Opt. Express 20, 13977 (2012).

    Article  ADS  Google Scholar 

  101. S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, Opt. Lett. 29, 2429 (2004).

    Article  ADS  Google Scholar 

  102. B. Cao, R. Okamoto, M. Hisamitsu, K. Tokuda, and Sh. Takeuchi, in Proceedings of the European Quantum Electronics Conference (Opt. Soc. Am., 2019), pa-per eb_p_25.

  103. K. G. Katamadze and S. P. Kulik, J. Exp. Theor. Phys. 112, 20 (2011).

    Article  ADS  Google Scholar 

  104. K. G. Katamadze, A. V. Paterova, E. G. Yakimova, K. A. Balygin, and S. P. Kulik, JETP Lett. 94, 262 (2011).

    Article  ADS  Google Scholar 

  105. D. B. Horoshko and M. I. Kolobov, Phys. Rev. A 95, 033837 (2017).

  106. M. V. Chekhova, S. Germanskiy, D. B. Horoshko, G. Kh. Kitaeva, M. I. Kolobov, G. Leuchs, Ch. R. Phillips, and P. A. Prudkovskii, Opt. Lett. 43, 375 (2018).

    Article  ADS  Google Scholar 

  107. G. Kh. Kitaeva, M. V. Chekhova, and O. A. Shumilkina, JETP Lett. 90, 172 (2009).

    Article  ADS  Google Scholar 

  108. G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Ge-novese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, Phys. Rev. Lett. 103, 193602 (2009).

  109. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94 (7), 1 (2005).

    Google Scholar 

  110. B. Li, Y. Xu, H. Zhu, F. Lin, and Y. Li, Phys. Rev. A 91 (2), 6 (2015).

    Google Scholar 

  111. K. G. Katamadze, N. A. Borshchevskaya, I. V. Dyakonov, A. V. Paterova, and S. P. Kulik, Phys. Rev. A 92, 023812 (2015).

  112. A. V. Belinskii and R. Singkh, J. Exp. Theor. Phys. 132, 212 (2021).

    Article  ADS  Google Scholar 

  113. J. Fan and A. Migdall, Opt. Express 15, 2915 (2007).

    Article  ADS  Google Scholar 

  114. J. Fan, M. D. Eisaman, and A. Migdall, Phys. Rev. A 76, 043836 (2007).

  115. P. Kultavewuti, E. Y. Zhu, L. Qian, V. Pusino, M. Sorel, and J. S. Aitchison, Opt. Express 24, 3365 (2016).

    Article  ADS  Google Scholar 

  116. M. Liscidini, J. E. Sipe, and L. G. Helt, Opt. Express 24, 9130 (2016).

    Article  ADS  Google Scholar 

  117. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, IEEE J. Sel. Top. Quantum Electron. 16, 325 (2010).

    Article  ADS  Google Scholar 

  118. Y.-H. Li, Zh.-Y. Zhou, L.-T. Feng, W.-T. Fang, Sh.‑l. Liu, Sh.-K. Liu, K. Wang, X.-F. Ren, D.‑Sh. Ding, L.-X. Xu, and B.-S. Shi, Phys. Rev. A-ppl. 7, 064005 (2017).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-72-10069, Program for Development of the Interdisciplinary Research–Educational School “Photonic and Quantum Technologies. Digital Medicine,” Moscow State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Katamadze.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katamadze, K.G., Pashchenko, A.V., Romanova, A.V. et al. Generation and Application of Broadband Biphoton Fields (Brief Review). Jetp Lett. 115, 581–595 (2022). https://doi.org/10.1134/S002136402260063X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402260063X

Navigation