Skip to main content
Log in

A SPDC-Based Source of Entangled Photons and its Characterization

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a short review of development and applications of single and biphoton sources. The main emphasis is on spontaneous parametric down-conversion (SPDC) sources capable of producing timecorrelated photon pairs. We also present a SPDC source of photon pairs at 1,064 nm pumped by a cw 532 nm laser. We consider the fundamental principles of quantum tomography and present results of characterization (entanglement and purity) of biphoton quantum states produced by this source. Additionally, we discuss some aspects of quantum entanglement suppression caused by the Migdall effect in a double-crystal scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Lewis, Nature, 118, 874 (1926).

    Article  ADS  Google Scholar 

  2. A. Einstein, Ann. Phys., 17, 132 (1905).

    Article  MATH  Google Scholar 

  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  4. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin (2000).

    Book  MATH  Google Scholar 

  5. H. K. Lo, M. Curty, and K. Tamaki, Nature Photon., 8, 595 (2014).

    Article  ADS  Google Scholar 

  6. S. Takeuchi, Jpn J. Appl. Phys., 53, 030101 (2014).

    Article  ADS  Google Scholar 

  7. P. Michler, A. Kiraz, C. Becher, et al., Science, 290, 2282 (2000).

    Article  ADS  Google Scholar 

  8. A. Dousse, J. Suffczynski, A. Beveratos, et al., Nature, 466, 217 (2010).

    Article  ADS  Google Scholar 

  9. A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett., 89, 067901 (2002).

    Article  ADS  Google Scholar 

  10. M. Keller, B. Lange, K. Hayasaka, et al., Nature, 431, 1075 (2004).

    Article  ADS  Google Scholar 

  11. R. Albrecht, A. Bommer, C. Pauly, et al., Appl. Phys. Lett., 105, 073113 (2014).

    Article  ADS  Google Scholar 

  12. C. H. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE ICC, Systems and Signal Processing (Bangalore, 1984).

  13. S. Pirandola, C. Ottaviani, G. Spedalieri, et al., Nature Photon., 9, 397 (2015).

    Article  ADS  Google Scholar 

  14. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett., 86, 5188 (2001).

    Article  ADS  Google Scholar 

  15. A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, Nature, 433, 230 (2005).

    Article  ADS  Google Scholar 

  16. P. G. Kwiat, K. Mattle, H. Weinfurter, et al., Phys. Rev. Lett., 75, 4337 (1995).

    Article  ADS  Google Scholar 

  17. P. G. Kwiat, E. Waks, A. G. White, et al., Phys. Rev. A, 60, R773 (1999).

    Article  ADS  Google Scholar 

  18. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, Phys. Rev. Lett., 93, 093601 (2004).

    Article  ADS  Google Scholar 

  19. J. E. Sharping, K. F. Lee, M. A. Foster, et al., Opt. Exp., 14, 12388 (2006).

    Article  ADS  Google Scholar 

  20. O. Alibart, J. Fulconis, G. K. L. Wong, et al., New J. Phys., 8, 67 (2006).

    Article  ADS  Google Scholar 

  21. J. Fan, A. Dogariu, and L. J. Wang, Opt. Lett., 30, 1530 (2005).

    Article  ADS  Google Scholar 

  22. L. Xiao-Song, C. Qun-Feng, S. Bao-Sen, and G. Guang-Can, Chin. Phys. Lett., 26, 064204 (2009).

    Article  ADS  Google Scholar 

  23. A. Hayat, P. Ginzburg, and M. Orenstein, Nature Photon., 2, 238 (2008).

    Article  Google Scholar 

  24. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum., 82, 071101 (2011).

    Article  ADS  Google Scholar 

  25. G. Milione, S. Evans, D.A. Nolan, and R.R. Alfano, Phys. Rev. Lett., 108, 190401 (2012).

    Article  ADS  Google Scholar 

  26. F. Cardano, E. Karimi, S. Slussarenko, et al., Appl. Opt., 51, C1 (2012).

    Article  Google Scholar 

  27. A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett., 89, 240401 (2002).

    Article  ADS  Google Scholar 

  28. D. N. Klyshko, Talk at the All-Union Workshop on Nonlinear Properties of Media (Chernogolovka, Moscow Region, 1966).

    Google Scholar 

  29. D. N. Klyshko, JETP Lett., 6, 23 (1967).

    ADS  Google Scholar 

  30. S. A. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and O. N. Chunaev, JETP Lett., 6, 575 (1967).

    Google Scholar 

  31. S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev. Lett., 18, 732 (1967).

    Article  ADS  Google Scholar 

  32. M. Douglas and H. Mahr, Phys. Rev. Lett., 18, 905 (1967).

    Article  Google Scholar 

  33. T. G. Giallorenzi and C. L. Tang, Phys. Rev., 166, 225 (1968).

    Article  ADS  Google Scholar 

  34. B. R. Mollow, Phys. Rev. A, 8, 2684 (1973).

    Article  ADS  Google Scholar 

  35. C. K. Hong and L. Mandel, Phys. Rev. A, 31, 2409 (1985).

    Article  ADS  Google Scholar 

  36. A. Joobeur, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A, 50, 3349 (1994).

    Article  ADS  Google Scholar 

  37. D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett., 25, 84 (1970).

    Article  ADS  Google Scholar 

  38. S. M. Arakelian, V. G. Tunkin, A. I. Kholodnykh, and A. S. Chirkin, Zh. Tekh. Fiz., 44, 1253 (1974).

  39. D. N. Klyshko, Sov. J. Quantum Electron., 10, 1112 (1980).

    Article  ADS  Google Scholar 

  40. A. A. Malygin, A. N. Penin, and A. V. Sergienko, JETP Lett., 33, 477 (1981).

    ADS  Google Scholar 

  41. L. Mandel, J. Opt. Soc. Am. B, 1, 108 (1984).

    Article  ADS  Google Scholar 

  42. C. K. Hong, S. R. Friberg, and L. Mandel, Appl. Opt., 24, 3877 (1985).

    Article  ADS  Google Scholar 

  43. C. H. Bennett, F. Bessette, G. Brassard, et al., J. Cryptol., 5, 3 (1992).

    Article  MATH  Google Scholar 

  44. D. Bouwmeester, J. W. Pan, K. Mattle, et al., Nature, 390, 575 (1997).

    Article  ADS  Google Scholar 

  45. M. Yu. Saygin, A. S. Chirkin, and M. I. Kolobov, J. Opt. Soc. Am. B, 29, 2090 (2012).

    Article  ADS  Google Scholar 

  46. P. Grangier, G. Roger, and A. Aspect, Europ. Phys. Lett., 1, 173 (1986).

    Article  ADS  Google Scholar 

  47. C. K. Hong and L. Mandel, Phys. Rev. Lett., 56, 58 (1986).

    Article  ADS  Google Scholar 

  48. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett., 59, 2044 (1987).

    Article  ADS  Google Scholar 

  49. D. Pelliccia, V. Schettini, F. Sciarrino, et al., Phys. Rev. A, 68, 042306 (2003).

    Article  ADS  Google Scholar 

  50. Y. H. Shih and C. O. Alley, Phys. Rev. Lett., 61, 2921 (1988).

    Article  ADS  Google Scholar 

  51. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett., 80, 3891 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. L. Hardy, Phys. Rev. Lett., 71, 1665 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Z. Y. Ou and L. Mandel, Phys. Rev. Lett., 61, 50 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  54. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys, 58, 1131 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. D. Bouwmeester, J. W. Pan, M. Daniell, et al., Phys. Rev. Lett., 82, 1345 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. J. W. Pan, D. Bouwmeester, M. Daniell, et al., Nature, 403, 515 (2000).

    Article  ADS  Google Scholar 

  57. Z. Zhao, Y. A. Chen, A. N. Zhang, et al., Nature, 430, 54 (2004).

    Article  ADS  Google Scholar 

  58. C. Y. Lu, X. Q. Zhou, O. Gühne, et al., Nature Phys., 3, 91 (2007).

    Article  ADS  Google Scholar 

  59. W. B. Gao, C. Y. Lu, X. C. Yao, et al., Nature Phys., 6, 331 (2010).

    Article  ADS  Google Scholar 

  60. X. C. Yao, T. X. Wang, P. Xu, et al., Nature Photon., 6, 225 (2012).

    Article  ADS  Google Scholar 

  61. A. I. Lvovsky, H. Hansen, T. Aichele, et al., Phys. Rev. Lett., 87, 050402 (2001).

    Article  ADS  Google Scholar 

  62. G. Greenstein and A. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics, Jones & Bartlett Learning, Sudbury, MA (2006).

    Google Scholar 

  63. A. Zeilinger, Dance of the Photons: From Einstein to Quantum Teleportation, Macmillan (2010).

  64. K. Edamatsu, Jpn J. Appl. Phys., 46, 7175 (2007).

    Article  ADS  Google Scholar 

  65. R. Rangarajan, M. Goggin, and P. Kwiat, Opt. Exp., 17, 18920 (2009).

    Article  ADS  Google Scholar 

  66. L. E. Vicent, A. B. U’Ren, R. Rangarajan, et al., New J. Phys., 12, 093027 (2010).

    Article  ADS  Google Scholar 

  67. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer, Berlin (2013).

    Google Scholar 

  68. T. Kim, M. Fiorentino and F. N. C. Wong, Phys. Rev. A, 73, 012316 (2006).

    Article  ADS  Google Scholar 

  69. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, Opt. Exp., 13, 8951 (2005).

    Article  ADS  Google Scholar 

  70. A. Migdall, J. Opt. Soc. Am. B, 14, 1093 (1997).

    Article  ADS  Google Scholar 

  71. R. Rangarajan, A. B. U’Ren, and P. G. Kwiat, J. Mod. Opt., 58, 312 (2011).

    Article  ADS  Google Scholar 

  72. S. A. Magnitskiy, P. P. Gostev, D. N. Frolovtsev, and V. V. Firsov, Moscow Univ. Phys. Bull., 5, 53 (2015).

    Google Scholar 

  73. U. Fano, Rev. Mod. Phys., 29, 74 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  74. D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, Phys. Rev. A, 48, 3159 (1993).

    Article  ADS  Google Scholar 

  75. G. M. D’Ariano, M. De Laurentis, M. G. A. Paris, et al., J. Opt. B, 4, S127 (2002).

    Article  Google Scholar 

  76. J. L. O’Brien, G. J. Pryde, A. G. White, et al., Nature, 426, 264 (2003).

    Article  ADS  Google Scholar 

  77. P. Walther, K. J. Resch, T. Rudolph, et al., Nature, 434, 169 (2005).

    Article  ADS  Google Scholar 

  78. R. M. Stevenson, R. J. Young, P. Atkinson, et al., Nature, 439, 179 (2006).

    Article  ADS  Google Scholar 

  79. S. S. Straupe, D. P. Ivanov, A. A. Kalinkin, et al., Phys. Rev. A, 87, 042109 (2013).

    Article  ADS  Google Scholar 

  80. K. S. Kravtsov, S. S. Straupe, I. V. Radchenko, et al., Phys. Rev. A, 87, 062122 (2013).

    Article  ADS  Google Scholar 

  81. G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, Quantum Tomography, Adv. Imaging Electron. Phys., 128, 206 (2003).

  82. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A, 64, 052312 (2001).

    Article  ADS  Google Scholar 

  83. R. Jozsa, J. Mod. Opt., 41, 2315 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  84. W. K. Wooters, Phys. Rev. Lett., 80, 2245 (1998).

    Article  ADS  Google Scholar 

  85. N. A. Peters, T. C. Wei, and P. G. Kwiat, Phys. Rev. A, 70, 052309 (2004).

    Article  ADS  Google Scholar 

  86. P. P. Gostev, S. A. Magnitsky, N. M. Nagorsky, et al., EPJ Web Conf., 103, 10010 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Magnitskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnitskiy, S., Frolovtsev, D., Firsov, V. et al. A SPDC-Based Source of Entangled Photons and its Characterization. J Russ Laser Res 36, 618–629 (2015). https://doi.org/10.1007/s10946-015-9540-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9540-x

Keywords

Navigation