Skip to main content
Log in

Effect of Hydrostatic Pressure on the Resistivity of La0.8Ag0.1MnO3 Ceramic near TC

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The effect of hydrostatic pressure up to 8.5 GPa on the transport characteristics of granular ceramic manganite La0.8Ag0.1MnO3 near the temperature corresponding to the magnetoresistance peak has been studied. The electrical resistivity has been measured in the temperature range of 275–320 K at pressures P = 0, 0.44, 2.32, 3.81, and 4.84 GPa. The temperature of the transition from the metallic to semiconductor type of conductivity is a monotonically increasing function of the applied pressure with a slope of 4.54 K/GPa. At 296 K, the linear logarithmic plot of the pressure dependence of the resistivity exhibits an anomaly in the form of a kink at 3.85 GPa. It has been shown that the observed transition with a change in the slope in the logarithmic plot of the pressure dependence of the resistivity is due to the existence of two scattering processes: intragranular and near-boundary ones. Near the transition point, both scattering processes make comparable contributions to the resistivity. For pressures P < 3.85 GPa, the contribution to the resistivity from scattering in the boundary layers of grains dominates, whereas the contribution from the homogeneous material within the grains is dominant in the high-pressure range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Dagotto, Springer Ser. Solid-State Sci. 136 (2013).

  2. V. Markovich, A. Wisniewski, and H. Szymczak, Handb. Magn. Mater. 22 (2014).

  3. H. Y. Hwang, T. T. M. Palstra, S. W. Cheong, and B. Batlogg, Phys. Rev. B 52, 15046 (1995).

    Article  ADS  Google Scholar 

  4. C. Cui, T. A. Tyson, Z. Zhong, J. P. Carlo, and Y. Qin, Phys. Rev. B 67, 104107 (2003).

  5. T. Roch, S. Yaghoubzadeh, F. S. Razavi, B. Leibold, R. Praus, and H.-U. Habermeier, Appl. Phys. A 67, 723 (1998).

    Article  ADS  Google Scholar 

  6. V. Laukhin, J. Fontcuberta, J. L. Garcia-Munoz, and X. Obradors, Phys. Rev. B 56, 10009 (1997).

    Article  ADS  Google Scholar 

  7. F. S. Razavi, G. V. Sudhakar Rao, H. Jalili, and H.‑U. Habermeier, Appl. Phys. Lett. 88, 174103 (2006).

  8. V. Markovich, I. Fita, R. Puzniak, E. Rozenberg, C. Martin, A. Wisniewski, A. Maignan, B. Raveau, Y. Yuzhelevskii, and G. Gorodetsky, Phys. Rev. B 70, 024403 (2004).

  9. R. Thiyagarajan, S. Arumugam, P. Sivaprakash, M. Kannan, C. Saravanan, and W. Yang, J. Appl. Phys. 121, 215902 (2017).

  10. V. Markovich, E. Rozenberg, G. Gorodetsky, D. Mogilyansky, B. Revzin, and J. Pelleg, J. Appl. Phys. 90, 2347 (2001).

    Article  ADS  Google Scholar 

  11. D. P. Kozlenko, I. N. Goncharenko, B. N. Savenko, and V. I. Voronin, J. Phys.: Condens. Matter 16, 6755 (2004).

    ADS  Google Scholar 

  12. D. P. Kozlenko, T. A. Chan, A. V. Trukhanov, C. E. Kichanov, S. V. Trukhanov, L. S. Dubrovinski, and B. N. Savenko, JETP Lett. 94, 579 (2011).

    Article  ADS  Google Scholar 

  13. E. S. Itskevich and V. F. Kraidenov, Phys. Solid State 43, 1267 (2001).

    Article  ADS  Google Scholar 

  14. V. Markovich, E. Rozenberg, A. I. Shames, G. Gorodetsky, I. Fita, K. Suzuki, R. Puzniak, D. A. Shulyatev, and Ya. M. Mukovskii, Phys. Rev. B 65, 144402 (2002).

  15. V. Markovich, E. Rozenberg, G. Gorodetsky, C. Martin, A. Maignan, M. Hervieu, and B. Raveau, J. Appl. Phys. 91, 10 (2002).

    Article  Google Scholar 

  16. M. Kumaresavanji, E. M. B. Saitovitch, J. P. Araujo, and M. B. Fontes, J. Mater. Sci. 48, 1324 (2013).

    Article  ADS  Google Scholar 

  17. S. Arumugam, C. Saravanan, R. Thiyagarajan, and G. Narsinga Rao, J. Magn. Magn. Mater. 507, 166775 (2020).

  18. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B 54, 11914 (1996).

    Article  ADS  Google Scholar 

  19. L. Wang, J. Yin, S. Y. Huang, X. F. Hunag, J. Xu, Z. G. Liu, and K. J. Chen, Phys. Rev. B 60, R6976 (1999).

    Article  ADS  Google Scholar 

  20. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  ADS  Google Scholar 

  21. I. K. Kamilov, A. G. Gamzatov, A. M. Aliev, A. B. Batdalov, Sh. B. Abdulvagidov, O. V. Mel’nikov, O. Yu. Gorbenko, and A. R. Kaul’, J. Exp. Theor. Phys. 105, 774 (2007).

    Article  ADS  Google Scholar 

  22. A. G. Gamzatov, A. B. Batdalov, I. K. Kamilov, A. R. Kaul, and N. A. Babushkina, Appl. Phys. Lett. 102, 032404 (2013).

  23. A. G. Gamzatov and I. K. Kamilov, J. Appl. Phys. 114, 093902 (2013).

  24. N. V. Volkov, Phys. Usp. 55, 250 (2012).

    Article  ADS  Google Scholar 

  25. L. Balcells, J. Fontcuberta, B. Martizen, and X. Obradors, Phys. Rev. B 58, R14697 (1998).

  26. A. G. Gamzatov, T. A. Gadzhimuradov, Zh. Li, L. Pi, and Yu. Zhang, J. Exp. Theor. Phys. 122, 151 (2016).

    Article  ADS  Google Scholar 

  27. S. A. Gudin, M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. A. Ugryumova, and N. N. Gapontseva, J. Exp. Theor. Phys. 121, 878 (2015).

    Article  ADS  Google Scholar 

  28. M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. A. Ugryumova, S. A. Gudin, and N. N. Gapontseva, J. Exp. Theor. Phys. 116, 823 (2013).

    Article  ADS  Google Scholar 

  29. S. A. Gudin, N. I. Solin, and N. N. Gapontseva, Phys. Solid State 60, 1078 (2018).

    Article  ADS  Google Scholar 

  30. A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter, and M. Yu. Ragan, Phys. Rev. B 63, 174424 (2001).

  31. K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, M. Yu. Kagan, I. V. Brodsky, and A. V. Klaptsov, J. Exp. Theor. Phys. 98, 572 (2004)].

    Article  ADS  Google Scholar 

  32. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  33. S. A. Gudin and N. I. Solin, J. Exp. Theor. Phys. 130, 543 (2020).

    Article  ADS  Google Scholar 

  34. S. A. Gudin and N. I. Solin, Phys. Solid State 62, 756 (2020).

    Article  ADS  Google Scholar 

  35. N. I. Solin, J. Magn. Magn. Mater. 401, 677 (2016).

    Article  ADS  Google Scholar 

  36. D. Khomskii and L. Khomskii, Phys. Rev. B 67, 052406 (2003).

Download references

ACKNOWLEDGMENTS

We are grateful to V. Markovich and K.I. Kugel for the close attention to this work and for useful comments.

Funding

This work was partially supported by the Russian Foundation for Basic Research, project nos. 20-58-54006 and 19-02-01000. S.A. Gudin acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation, project no. AAAA-A18-118020190095-4 Quantum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gamzatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamzatov, A.G., Gudin, S.A., Arslanov, T.R. et al. Effect of Hydrostatic Pressure on the Resistivity of La0.8Ag0.1MnO3 Ceramic near TC. Jetp Lett. 115, 190–195 (2022). https://doi.org/10.1134/S0021364022040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022040051

Navigation