Skip to main content
Log in

Pressure-enhanced ferromagnetism and metallicity in La1.24Sr1.76Mn2O7 bilayered manganite system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the low temperature magnetization, electrical resistance, and magnetoresistance of La1.24Sr1.76Mn2O7 bilayer manganite system under hydrostatic pressure. At ambient pressure, the compound shows a sharp ferromagnetic transition (T C) accompanied by a metal–insulator transition (T MI) at 130 K. We observe that the T C and T MI increase with hydrostatic pressure at a rate of dT C/dP = 2.08 K/kbar and dT MI/dP = 2 K/kbar, respectively. Also, we observe an appreciable increase of magnetic moments at low temperatures with increasing pressure. The high temperature regime of temperature dependence of resistivity curves was fitted with the Emin–Holstein’s polaron hopping model and the calculated activation energy values suggest that the applied pressure weakens the formation of Jahn–Teller polarons. The magnetoresistance ratio (MRR) was measured at T C and at 4.2 K upon an external magnetic field of 5 T. The observed MRR at T C is about 210 % and the applied pressure increases the MRR significantly. These results can be interpreted by the pressure-enhanced overlap between the orbitals of Mn–O–Mn, which facilitates the charge transfer and hence enhances the ferromagnetism and metallicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dagotto E, Hotta T, Moreo A (2001) Phys Rep 344:1

    Article  CAS  Google Scholar 

  2. Tokura Y, Tomioka Y (1999) J Magn Magn Mater 200:1

    Article  CAS  Google Scholar 

  3. Kimura T, Tokura Y (2000) Annu Rev Mater Sci 30:451

    Article  CAS  Google Scholar 

  4. Ram RAM, Ganguly P, Rao CNR (1987) J Solid State Chem 70:82

    Article  CAS  Google Scholar 

  5. Zener C (1951) Phys Rev 82:403

    Article  CAS  Google Scholar 

  6. Anderson PW, Hasegawa H (1955) Phys Rev 100:675

    Article  CAS  Google Scholar 

  7. Millis AJ, Littlewood PB, Shraiman BI (1995) Phys Rev Lett 74:5144

    Article  CAS  Google Scholar 

  8. Argyriou DN, Mitchell JF, Goodenough JB, Chmaissem O, Short S, Jorgensen JD (1997) Phys Rev Lett 78:1568

    Article  CAS  Google Scholar 

  9. Ishihara S, Okamoto S, Maekawa S (1997) J Phys Soc Jpn 66:2965

    Article  CAS  Google Scholar 

  10. Kumar RS, Prabhakaran D, Boothroyd A, Nicol MF, Cornelius A (2006) J Phys Chem Solids 67:2046

    Article  CAS  Google Scholar 

  11. Moritomo Y, Hirota K, Nakao H, Kiyama T, Murakami Y, Okamoto S, Ishihara S, Maekawa S, Kubota M, Yoshizawa H (2000) Phys Rev B 62:17

    Article  CAS  Google Scholar 

  12. Kamenev KV, McIntyre GJ, Arnold Z, Kamarad J, Lees MR, Balakrishnan G, Chung EML, Paul DMcK (2001) Phys Rev Lett 87:167203

    Article  CAS  Google Scholar 

  13. Mitchell JF, Ling CD, Millburn JE, Argyriou DN, Berger A, Medarde M, Miller D, Luo ZP (2002) Appl Phys A 74:S1776

    Article  CAS  Google Scholar 

  14. Sun Z, Douglas JF, Fedorov AV, Chuang YD, Zheng H, Mitchell JF, Dessau DS (2007) Nat Phys 3:248

    Article  CAS  Google Scholar 

  15. Kumaresavanji M, Reis MS, Xing YT, Fontes MB (2009) J Appl Phys 106:093709

    Article  Google Scholar 

  16. Kubota M, Fujioka H, Hirota K, Ohoyama K, Moritomo Y, Yoshizawa H, Endoh Y (2000) J Phys Soc Jpn 69:1606

    Article  CAS  Google Scholar 

  17. Wang A, Cao G, Liu Y, Long Y, Li Y, Feng Z, Ross JH (2005) J Appl Phys 97:103906

    Article  Google Scholar 

  18. Argyriou DN, Mitchell JF, Potter CD, Bader SD, Kleb R, Jorgensen JD (1997) Phys Rev B 55:R11965

    Article  CAS  Google Scholar 

  19. Holstein T (1959) Ann Phys 8:325

    Article  CAS  Google Scholar 

  20. Zhou JS, Goodenough JB, Mitchell JF (2000) Phys Rev B 61:R9217

    Article  CAS  Google Scholar 

  21. Murata T, Kushida H, Terai T, Kakeshita T (2007) J Magn Magn Mater 310:1555

    Article  CAS  Google Scholar 

  22. Ding Y, Haskel D, Tseng YC, Kaneshita E, van Veenendaal M, Mitchell JF, Sinogeikin SV, Prakapenka V, Mao HK (2009) Phys Rev Lett 102:237201

    Article  Google Scholar 

  23. Kimura T, Asamitsu A, Tomioka Y, Tokura Y (1997) Phys Rev Lett 79:3720

    Article  CAS  Google Scholar 

  24. Moritomo Y, Asamitsu A, Tokura Y (1995) Phys Rev B 51:16491

    Article  CAS  Google Scholar 

  25. Chang CF, Chou PH, Tsay HL, Weng SS, Chatterjee S, Yang HD, Liu RS, Shen CH, Li WH (1998) Phys Rev B 58:12224

    Article  CAS  Google Scholar 

  26. Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041

    Article  CAS  Google Scholar 

  27. Dorr K, Muller KH, Ruck K, Krabbes G, Schultz L (1999) J Appl Phys 85:5420

    Article  CAS  Google Scholar 

  28. Julliere M (1975) Phys Lett A 54:225

    Article  Google Scholar 

Download references

Acknowledgements

M.K. is thankful to FCT, Portugal for the grant SFRH/BPD/75110/2010. This work was supported by the CNPq, Brazil and TWAS, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kumaresavanji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumaresavanji, M., Saitovitch, E.M.B., Araujo, J.P. et al. Pressure-enhanced ferromagnetism and metallicity in La1.24Sr1.76Mn2O7 bilayered manganite system. J Mater Sci 48, 1324–1329 (2013). https://doi.org/10.1007/s10853-012-6877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6877-1

Keywords

Navigation