Skip to main content
Log in

Spectra of Decaying Two-Dimensional Magnetohydrodynamic Turbulence on a β-Plane

  • Plasma, Hydro- And Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The formation of the Iroshnikov-Kraichnan spectrum in the inertial interval has been shown for two-dimensional β-plane decaying homogeneous magnetohydrodynamic turbulence. An expression for the wavenum-ber that characterizes the boundary between the inertial interval of the Iroshnikov-Kraichnan spectrum and the region of existence of Rossby waves has been obtained. The self-similar decay of the Iroshnikov- Kraichnan spectrum in time has been investigated. The violation of the self-similar decay of the total energy spectrum and the formation of the Kolmogorov spectrum in the inertial range of the kinetic energy have been found at large time intervals. The inverse cascade of the kinetic energy characteristic of the detected Kolm-ogorov spectrum provides the origin of zonal flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Petrosyan, A. Balogh, M. L. Goldstein, J. Léorat, E. Marsch, K. Petrovay, B. Roberts, R. von Steiger, and J. C. Vial, Space Sci. Rev. 156, 135 (2010).

    Article  ADS  Google Scholar 

  2. J. F. Hawley and S. A. Balbus, Numer. Astrophys. 240, 187 (1999).

    Article  ADS  Google Scholar 

  3. V. I. Ilgisonis, Classical Problems in the Physics of Hot Plasmas, Course of Lectures (MEI, Moscow, 2015) [in Russian].

    Google Scholar 

  4. C. W. Horton and W. Horton, Turbulent Transport in Magnetized Plasmas (World Scientific, Hackensack, 2017).

    Book  Google Scholar 

  5. V. P. Pastukhov and N. V. Chudin, JETP Lett. 82, 356 (2005).

    Article  ADS  Google Scholar 

  6. P. A. Davidson, Turbulence in Rotating, Stratified and Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  7. S. M. Tobias, P. H. Diamond, and D. W. Hughes, As-trophys. J. 667, 113 (2007).

    ADS  Google Scholar 

  8. T. A. Zinyakov and A. S. Petrosyan, JETP Lett. 108, 85 (2018).

    Article  ADS  Google Scholar 

  9. J. B. Parker and N. C. Constantinou, Phys. Rev. Fluids 4, 083701 (2019).

    Article  ADS  Google Scholar 

  10. V. I. Il’gisonis and V. P. Pastukhov, Plasma Phys. Rep. 22, 208 (1996).

    ADS  Google Scholar 

  11. P. H. Diamond, S. I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Control. Fusion 47, 35 (2005).

    Article  Google Scholar 

  12. Ö. D. Gürcan and P. H. Diamond, J. Phys. A: Math. Theor. 48, 293001 (2015).

    Article  Google Scholar 

  13. P. B. Rhines, J. Fluid Mech. 69, 417 (1975).

    Article  ADS  Google Scholar 

  14. G. K. Vallis and M. E. Maltrud, J. Phys. Ocean. 23, 1346 (1993).

    Article  ADS  Google Scholar 

  15. S. D. Danilov and D. Gurarii, Phys. Usp. 43, 863 (2000).

    Article  ADS  Google Scholar 

  16. G. Boffetta and R. E. Ecke, Ann. Rev. Fluid Mech. 44, 427 (2012).

    Article  ADS  Google Scholar 

  17. A. Pouquet, J. Fluid Mech. 88, 1 (1977).

    Article  ADS  Google Scholar 

  18. R. S. Iroshnikov, Sov. Astron. 7, 566 (1963).

    ADS  MathSciNet  Google Scholar 

  19. R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Biskamp and E. Schwarz, Phys. Plasmas 8, 3282 (2001).

    Article  ADS  Google Scholar 

  21. P. Tabeling, Phys. Rep. 362, 1 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Alexakis and L. Biferale, Phys. Rep. 767, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 19 (1941).

    ADS  Google Scholar 

  24. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).

    Article  ADS  Google Scholar 

  25. D. G. Fox and S. A. Orszag, J. Comput. Phys. 11, 612 (1973).

    Article  ADS  Google Scholar 

  26. S. A. Orszag, J. Atmos. Sci. 28, 1074 (1971).

    Article  ADS  Google Scholar 

  27. D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  28. R. Kinney, J. C. McWilliams, and T. Tajima, Phys. Plasmas 2, 3623 (1995).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to a referee for useful comments.

Funding

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS, by the Presidium of the Russian Academy of Sciences (project KP19-270 “Problems of the Origin and Evolution of the Universe Using Ground-Based Observations and Space Research”), and by the Russian Foundation for Basic Research (project no. 19-02-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Zinyakov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 2, pp. 65-74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinyakov, T.A., Petrosyan, A.S. Spectra of Decaying Two-Dimensional Magnetohydrodynamic Turbulence on a β-Plane. Jetp Lett. 111, 76–84 (2020). https://doi.org/10.1134/S0021364020020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020020125

Navigation