Skip to main content
Log in

Magnetically and Electrically Controlled Microwave Interference Pattern in a Meta-Interferometer

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A specific selective effect of ferromagnetic and dipole resonances on an interference pattern in the range of 3–6 GHz has been detected experimentally for the first time in a modified interferometer based on a waveguide T junction with a metastructure consisting of a ferrite plate and varactor-loaded dipole or ring conducting elements as a controlled beam splitter. A dependence of the shape, width, intensity, and frequency of an interference band on the magnitude and sign of a static magnetic field H, the relative position of ferromagnetic resonance and band, and the electric voltage VDC on varactor diodes has been observed. The nonreciprocity of microwave transmission in interference stop bands characterized by change in the transmission coefficient T at the inversion of H has been revealed. Nonreciprocity increases at the excitation of ferromagnetic resonance near a band. In this case, a jump of T by two orders of magnitude to a level of a passband is observed with the reversal of the magnetic field H. The sign of nonreciprocity depends on the relative position of ferromagnetic resonance and the stop band and can change at a small variation of the magnitude of H. The selectively controlled narrowing of the nonreciprocal band by several times, as well as the shift by 0.2 GHz, is observed with the variation of VDC in the range of 0–10 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Ustinova, A. A. Nikitin, A. V. Kondrashov, D. A. Popov, A. B. Ustinov, and E. Lähderanta, Tech. Phys. Lett. 42, 891 (2016).

    Article  ADS  Google Scholar 

  2. V. M. Muravev, A. A. Fortunatov, A. A. Dremin, and I. V. Kukushkin, V. M. Muravev, A. A. Fortunatov, A. A. Dremin, and I. V. Kukushkin, JETP Lett. 103, 380 (2016).

    Article  ADS  Google Scholar 

  3. G. Kraftmakher, V. Butylkin, Yu. Kazantsev, and V. Mal’tsev, J. Radioelectron. 9, 1684 (2018).

    Google Scholar 

  4. X. S. Ma, S. Zotter, N. Tetic, A. Qarry, T. Jennewein, and A. Zellinger, Opt. Express 19, 22723 (2011).

    Article  ADS  Google Scholar 

  5. M. P. Fok and J. Ge, Photonics 4(4), 45 (2017).

    Article  Google Scholar 

  6. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  7. S. A. Tretyakov, Top. Rev. J. Opt. 19, 013002 (2017).

    ADS  Google Scholar 

  8. K. Entesari and G. M. Rebeiz, IEEE Trans. Microwave Theory Tech. 53, 1103 (2005).

    Article  ADS  Google Scholar 

  9. V. S. Butylkin and G. A. Kraftmakher, Tech. Phys. Lett. 32, 775 (2006).

    Article  ADS  Google Scholar 

  10. I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, Electron. Lett. 40, 1347 (2004).

    Article  Google Scholar 

  11. H. Yuan, B. O. Zhu, and Y. Feng, J. Appl. Phys. 117, 173103 (2015).

    Article  ADS  Google Scholar 

  12. W. Wang, J. Wang, M. Yan, J. Wang, H. Ma, M. Feng, and Sh. Qu, J. Phys. D: Appl. Phys. 51, 315001 (2018).

    Article  Google Scholar 

  13. D. Zhirihin, C. Simovski, P. Belov, and S. Glybovski, IEEE Antennas Wireless Propag. Lett. 16, 2626 (2017).

    Article  ADS  Google Scholar 

  14. R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems:Fundamentals, Design, and Applications, 2nd ed. (Wiley, Hoboken, NJ, USA, 2018), p. 928.

    Book  Google Scholar 

  15. Y. J. Zhao, B. C. Zhou, Z. K. Zhang, R. Zhang, and B. Y. Li, Optoelectron. Lett. 13, 120 (2017).

    Article  ADS  Google Scholar 

  16. A. R. Brown and G. M. Rebeiz, IEEE Trans. Microwave Theory Tech. 48, 1157 (2000).

    Article  ADS  Google Scholar 

  17. A. Genc and R. Baktur, Microwave Opt. Technol. Lett. 51, 2394 (2009).

    Article  Google Scholar 

  18. V. Butylkin, Yu. Kazantsev, G. Kraftmakher, and V. Mal’tsev, Appl. Phys. A 123, 57 (2017).

    Article  ADS  Google Scholar 

  19. D. Bensafieddine, F. Djerfaf, F. Chouireb, and D. Vincent, Appl. Phys. A 124, 581 (2018).

    Article  ADS  Google Scholar 

  20. N. Apaydin, K. Sertel, and J. L. Volakis, IEEE Trans. Antennas Propag. 62, 2954 (2014).

    Article  ADS  Google Scholar 

  21. F. A. Ghaffar, J. R. Bray, and A. Shamim, IEEE Trans. Antennas Propag. 62, 1238 (2014).

    Article  ADS  Google Scholar 

  22. V. Rawat, S. Dhobale, and S. N. Kale, J. Appl. Phys. 116, 164106 (2014).

    Article  ADS  Google Scholar 

  23. T. C. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Sing, Appl. Phys. Lett. 112, 201111 (2018).

    Article  ADS  Google Scholar 

  24. E. A. Brui, A. V. Shchelokova, A. V. Sokolov, A. P. Slobozhanyuk, A. E. Andreychenko, V. A. Fokin, P. A. Belov, and I. V. Melchakov, JETP Lett. 108, 423 (2018).

    Article  ADS  Google Scholar 

  25. D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Yu. S. Kivshar, Phys. Rev. Lett. 121, 163901 (2018).

    Article  ADS  Google Scholar 

  26. M. A. Gorlach, X. Ni, D. A. Smirnova, D. Korobkin, D. Zhirihin, A. P. Slobozhanyuk, P. A. Belov, A. Alü, and A. B. Khanikaev, Nat. Commun. 9, 909 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kraftmakher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraftmakher, G.A., Butylkin, V.S., Kazantsev, Y.N. et al. Magnetically and Electrically Controlled Microwave Interference Pattern in a Meta-Interferometer. Jetp Lett. 109, 232–238 (2019). https://doi.org/10.1134/S0021364019040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019040106

Navigation