Skip to main content
Log in

High Quality Factor Mechanical Resonance in a Silicon Nanowire

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mode were measured at a temperature of 20 mK for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler–Bernoulli theory. The measured internal quality factor of the 5 μm-long resonator, 3.62 × 104, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity ~6 × 10−20 g Hz–1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). doi 10.1063/1.1927327

    Article  ADS  Google Scholar 

  2. W.-M. Zhang, K.-M. Hu, Z. K. Peng, and G. Meng, Sensors 15, 26478 (2015). doi 10.3390/s151026478

    Article  Google Scholar 

  3. B. Arash, J.-W. Jiang, and T. Rabczuk, Appl. Phys. Rev. 2, 021301 (2015). doi 10.1063/1.4916728

    Article  ADS  Google Scholar 

  4. Y. Greenberg, Yu. A. Pashkin, and E. V. Ilichev, Phys. Usp. 55, 1382 (2012). doi 10.3367/UFNr.0182.201204c.0407

    Article  Google Scholar 

  5. V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, Yu. A. Pashkin, and V. A. Krupenin, Nanoscale 9, 613 (2017). doi 10.1039/C6NR07258E

    Article  Google Scholar 

  6. G. Lovat, B. Choi, D.W. Paley, M. L. Steigerwald, L. Venkataraman, and X. Roy, Nat. Nanotechnol. 12, 1050 (2017). doi 10.1038/nnano.2017.156

    Article  ADS  Google Scholar 

  7. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, S. P. Gubin, V. V. Kolesov, D. E. Presnov, S. A. Iakovenko, G. B. Khomutov, and A. N. Korotkov, Phys. Usp. 41, 202 (1998). doi 10.1070/PU1998v041n02ABEH000364

    Article  ADS  Google Scholar 

  8. S. T. Bartsch, M. Arp, and A. M. Ionescu, IEEE J. Electron Dev. Soc. 2 (2), 8 (2014). doi 10.1109/JEDS.2013.2295246

    Article  Google Scholar 

  9. B. Ilic, Y. Yang, and H. G. Craighead, Appl. Phys. Lett. 85, 2604 (2004). doi 10.1063/1.1794378

    Article  ADS  Google Scholar 

  10. H. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001). doi 10.1063/1.1418256

    Article  ADS  Google Scholar 

  11. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, Opt. Express 20, 8535 (2012). doi 10.1364/OE.20.008535

    Article  ADS  Google Scholar 

  12. R. G. Knobel and A. N. Cleland, Nature (London, U.K.) 424, 291 (2003). doi 10.1038/nature01773

    Article  ADS  Google Scholar 

  13. A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, A. K. Bakarov, A. I. Toropov, E. E. Rodyakina, and A. A. Shklyaev, Appl. Phys. Lett. 106, 183110 (2015). doi 10.1063/1.4920932

    Article  ADS  Google Scholar 

  14. A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Nature (London, U.K.) 443, 193 (2006). https://www.nature.com/articles/nature05027.

    Article  ADS  Google Scholar 

  15. J. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Wittaker, K. W. Lehnert, and R. W. Simmonds, Nature (London, U.K.) 475, 359 (2011). https://www.nature.com/articles/ nature10261

    Article  ADS  Google Scholar 

  16. K. Harrabi, Yu. A. Pashkin, O. V. Astafiev, S. Kafanov, T. F. Li, and J. S. Tsai, Appl. Phys. A 108, 7 (2012). doi 10.1007/s00339-012-6981-8

    Article  ADS  Google Scholar 

  17. D. I. Bradley, R. George, A. M. Guénault, R. P. Haley, S. Kafanov, M. T. Noble, Yu. A. Pashkin, G. R. Pickett, M. Poole, J. R. Prance, M. Sarsby, R. Schanen, V. Tsepelin, T. Wilcox, and D. E. Zmeev, Sci. Rep. 7, 4876 (2017). doi 10.1038/s41598-017-04842-y

    Article  ADS  Google Scholar 

  18. D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 75, 920 (1999). doi 10.1063/1.124554

    Article  ADS  Google Scholar 

  19. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett. 84, 4469 (2004). doi 10.1063/1.1755417

    Article  ADS  Google Scholar 

  20. A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653 (1996). doi 10.1063/1.117548

    Article  ADS  Google Scholar 

  21. K. Mori, in Silicon-On-Insulator (SOI) Technology (Woodhead, Singapore, 2014), Chap. 14, p. 435. doi 10.1533/9780857099259.2.435

    Google Scholar 

  22. D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, V. V. Kolybasova, I. A. Devyatov, V. A. Krupenin, and I. I. Soloviev, Beilstein J. Nanotechnol. 4, 330 (2013). doi 10.3762/bjnano.4.38

    Article  Google Scholar 

  23. D. E. Presnov, S. V. Amitonov, and V. A. Krupenin, Russ. Microelectron. 41, 364 (2012). doi 10.1134/S1063739712050034

    Article  Google Scholar 

  24. M. Rubtsova, G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, and A. Egorov, in Proceedings of the Congress on Biosensors 2016, May 25–27, Gothenburg, Sweden, Proc. Technol. 27, 234 (2017). doi 10.1016/j.protcy.2017.04.099

    Google Scholar 

  25. A. S. Trifonov, D. E. Presnov, I. V. Bozhev, D. A. Evplov, V. Desmaris, and V. A. Krupenin, Ultramicroscopy 179, 33 (2017). doi 10.1016/j.ultramic.2017.03.030

    Article  Google Scholar 

  26. A.N. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003). doi 10.1007/978-3-662-05287-710.1007/978-3-662-05287-7

    Book  Google Scholar 

  27. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley–VCH, Weinheim, 2007). doi 10.1002/9783527617586

    MATH  Google Scholar 

  28. H. W. Ch. Postma, I. Kozinsky, A. Husain, and M. L. Roukes, Appl. Phys. Lett. 86, 223105 (2005). doi 10.1063/1.1929098

    Article  ADS  Google Scholar 

  29. F. Tajaddodianfar, M. R. H. Yazdi, and H. N. Pishkenari, Microsyst. Technol. 23, 1913 (2017). doi 10.1007/s00542-016-2947-7

    Article  Google Scholar 

  30. L. Laurent, J. J. Yon, J. S. Moulet, P. Imperinetti, and L. Duraffourg, Sens. Actuators, A 263, 326 (2017). doi 10.1016/j.sna.2017.06.027

    Article  Google Scholar 

  31. T. F. Li, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 92, 043112 (2008). doi 10.1063/1.2838749

    Article  ADS  Google Scholar 

  32. E. Buks and B. Yurke, Phys. Rev. E 74, 046619 (2017). doi 10.1103/PhysRevE.74.046619

    Article  ADS  Google Scholar 

  33. A. N. Cleland and M. L. Roukes, Sens. Actuators 72, 256 (1999). doi 10.1016/S0924-4247(98)00222-2

    Article  Google Scholar 

  34. L. Yu, H. Pajouhi, M. R. Nelis, J. F. Rhoads, and S. Mohammadi, IEEE Trans. Nanotechnol. 11, 1093 (2012). doi 10.1109/TNANO.2012.2212028

    Article  ADS  Google Scholar 

  35. G. Zolfagharkhani, A. Gaidarzhy, S. Shim, R. L. Badzey, and P. Mohanty, Phys. Rev. B 72, 224101 (2005). doi 10.1103/PhysRevB.72.224101

    Article  ADS  Google Scholar 

  36. J. Sulkko, M. Sillanpää, P. Häkkinen, L. Lechner, M. Helle, A. Fefferman, J. Parpia, and P. Hakonen, Nano Lett. 10, 4884 (2010). doi 10.1021/nl102771p

    Article  ADS  Google Scholar 

  37. F. Hoehne, Yu. A. Pashkin, O. Astafiev, L. Faoro, L. B. Ioffe, Y. Nakamura, and J. S. Tsai, Phys. Rev. B 81, 184112 (2010). doi 10.1103/PhysRevB.81.184112

    Article  ADS  Google Scholar 

  38. M. Imboden and P. Mohanty, Phys. Rev. B 79, 125424 (2009). doi 10.1103/PhysRevB.79.125424

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Pashkin.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 7, pp. 522–528.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presnov, D.E., Kafanov, S.G., Dorofeev, A.A. et al. High Quality Factor Mechanical Resonance in a Silicon Nanowire. Jetp Lett. 108, 492–497 (2018). https://doi.org/10.1134/S0021364018190037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018190037

Navigation