Skip to main content
Log in

Thermodynamics of a Magnetic Transition in MnS2 at High Pressures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The behavior of the specific heat of MnS2 at high pressures has been studied. A significant increase in the transition temperature TN to an antiferromagnetic state with the pressure from 48.2 K at atmospheric pressure to 76 K at a pressure of 5.3 GPa has been revealed. The initial pressure derivative is dT N /dP = 4.83 K/GPa. It has been found that the parameter α = d(logT N )/d(logV ) = −6.6 ± 0.1 is significantly different from the value α = −10/3 ≈ −3.3 (Bloch relation), which is typical of numerous antiferromagnetic insulators—transition- metal oxides and fluorides. The volume jump at the magnetic transition point has been estimated. The necessity of direct dilatometric measurements of the volume has been justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Chattopadhyay, P. Burlet, L. P. Regnault, and J. Rossat-Mignod, Phys. B (Amsterdam, Neth.) 156–157, 241 (1989).

    Article  Google Scholar 

  2. T. Chattopadhyay, T. Bruckel, and P. Burlet, Phys. Rev. B 44, 7394 (1991).

    Article  ADS  Google Scholar 

  3. T. Chattopadhyay, P. Burlet, and P. J. Brown, J. Phys.: Condens. Matter 3, 5555 (1991).

    ADS  Google Scholar 

  4. S. K. Sinha, G. H. Lander, S. M. Shapiro, and O. Vogt, Phys. Rev. B 23, 4556 (1981).

    Article  ADS  Google Scholar 

  5. E. Domany, D. Mukamel, and M. E. Fisher, Phys. Rev. B 15, 5432 (1977).

    Article  ADS  Google Scholar 

  6. A. Aharony and A. D. Bruce, Phys. Rev. Lett. 42, 462 (1979).

    Article  ADS  Google Scholar 

  7. J. A. C. Marples, C. F. Sampson, F. A. Wedgwood, and M. Kuznietz, J. Phys. C: Solid State Phys. 8, 708 (1975).

    Article  ADS  Google Scholar 

  8. H. W. Knott, G. H. Lander, M. H. Mueller, and O. Vogt, Phys. Rev. B 21, 4159 (1980).

    Article  ADS  Google Scholar 

  9. T. Chattopadhyay, H. G. v. Schnering, and H. A. Graf, Solid State Commun. 50, 865 (1984).

    Article  ADS  Google Scholar 

  10. M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Boni, and C. Pfleiderer, Phys. Rev. B 87, 134407 (2013).

    Article  ADS  Google Scholar 

  11. S. M. Stishov, A. E. Petrova, S. Khasanov, G. Kh. Panova, A. A. Shikov, J. C. Lashley, D. Wu, and T. A. Lograsso, Phys. Rev. B 76, 052405 (2007).

    Article  ADS  Google Scholar 

  12. E. F. Westrum, Jr. and F. Gronvold, J. Chem. Phys. 52, 3820 (1970).

    Article  ADS  Google Scholar 

  13. S. A. J. Kimber and T. Chatterji, J. Phys.: Condens. Matter 27, 226003 (2015).

    ADS  Google Scholar 

  14. H. Itoh and S. Miyahara, J. Phys. Soc. Jpn. 42, 470 (1977).

    Article  ADS  Google Scholar 

  15. T. Chattopadhyay and H. Vjellvag, Phys. Lett. A 120, 44 (1987).

    Article  ADS  Google Scholar 

  16. P. Vulliet, J. P. Sanchez, D. Braithwaite, M. Amanowicz, and B. Malaman, Phys. Rev. B 63, 184403 (2001).

    Article  ADS  Google Scholar 

  17. T. Chatterji, A. M. dos Santos, J. J. Molaison, T. C. Hansen, S. Klotz, M. Tucker, K. Samanta, and T. Saha-Dasgupta, Phys. Rev. B 91, 104412 (2015).

    Article  ADS  Google Scholar 

  18. D. Bloch, J. Phys. Chem. Solids 27, 881 (1966).

    Article  ADS  Google Scholar 

  19. K. C. Johnson and A. J. Sievers, Phys. Rev. B 10, 1027 (1974).

    Article  ADS  Google Scholar 

  20. T. Chattopadhyay and H. G. von Schnering, J. Phys. Chem. Solids 46, 113 (1985).

    Article  ADS  Google Scholar 

  21. T. Chattopadhyay, H. G. von Schnering, and W. A. Grosshans, Phys. B (Amsterdam, Neth.) 139–140, 305 (1986).

    Article  Google Scholar 

  22. S. A. J. Kimber, A. Salamat, S. R. Evans, H. O. Jeschke, K. Muthukumar, M. Tomić, F. Salvat-Pujol, R. Valenti, M. V. Kaisheva, I. Zizak, and T. Chatterji, Proc. Natl. Acad. Sci. U. S. A. 111, 5106 (2014).

    Article  ADS  Google Scholar 

  23. A. E. Petrova, V. A. Sidorov, and S. M. Stishov, Phys. B (Amsterdam, Neth.) 359–361, 1463 (2005).

    Article  Google Scholar 

  24. A. Eiling and J. C. Schilling, J. Phys. F.: Metal Phys. 11, 623 (1981).

    Article  ADS  Google Scholar 

  25. V. A. Sidorov, J. D. Thompson, and Z. Fisk, J. Phys.: Condens. Matter 22, 406002 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brazhkin.

Additional information

Original Russian Text © V.A. Sidorov, Jing Guo, Liling Sun, V.V. Brazhkin, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 5, pp. 329–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, V.A., Guo, J., Sun, L. et al. Thermodynamics of a Magnetic Transition in MnS2 at High Pressures. Jetp Lett. 107, 311–314 (2018). https://doi.org/10.1134/S0021364018050132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018050132

Navigation