Skip to main content
Log in

Impact ionization rate in direct gap semiconductors

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In the framework of the 14-band kp model, the intensity of the impact ionization processes in direct gap semiconductors is studied and explicit expressions for the impact ionization rate are obtained. It is shown that the rate of the process near the threshold energy is determined by the sum of the isotropic and strongly anisotropic contributions. The former contribution is proportional to the cube of the distance from the threshold, whereas the latter is a quadratic one arising only because of the coupling with remote bands. The comparison of these contributions under averaging over the nondegenerate isotropic distribution of nonequilibrium electrons characterized by some effective temperature T* demonstrates that the cubic contribution rather than the commonly used quadratic one is dominant in the direct gap semiconductors with E g<1−1.5 eV up to T* = 300 K. This should be taken into account in the calculations of the operating characteristics of the devices based on the avalanche multiplication of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New Jersey, 2007).

    Google Scholar 

  2. K. Gopalakrishan, P. B. Griffin, and J. D. Plummer, IEEE Trans. Electron. Dev. 52, 69 (2005).

    Article  ADS  Google Scholar 

  3. V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Peterb. Inst.Yad. Fiz. AN, St.-Petersburg, 1997, North-Holland, Amsterdam, 1991).

    Google Scholar 

  4. L. V. Keldysh, Sov. Phys. JETP 10, 509 (1959).

    Google Scholar 

  5. K. Y. Choo and D. S. Ong, J. Appl. Phys. 96, 5649 (2004).

    Article  ADS  Google Scholar 

  6. D. Harrison, R. A. Abram, and S. Brand, J. Appl. Phys. 85, 8186 (1999).

    Article  ADS  Google Scholar 

  7. B. Gelmont, K. Kim, and M. Shur, Phys. Rev. Lett. 69, 1280 (1992).

    Article  ADS  Google Scholar 

  8. A. P. Dmitriev, M. P. Mikhailova, and I. N. Yassievich, Phys. Status Solidi B 140, 9 (1987).

    Article  ADS  Google Scholar 

  9. G. G. Zegrya and A. S. Polkovnikov, J. Exp. Theor. Phys. 86, 815 (1998).

    Article  ADS  Google Scholar 

  10. C. L. Anderson and C. R. Crowell, Phys. Rev. B 5, 2267 (1972).

    Article  ADS  Google Scholar 

  11. R. Winkler, Springer Tracts in Modern Physics 191 (2003).

    Google Scholar 

  12. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  ADS  Google Scholar 

  13. A. A. Greshnov, Yu. B. Vasil’ev, N. N. Mikhailov, G. Yu. Vasil’eva, and D. Smirnov, JETP Lett. 97, 102 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Afanasiev.

Additional information

Original Russian Text © A.N. Afanasiev, A.A. Greshnov, G.G. Zegrya, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 9, pp. 554–558.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, A.N., Greshnov, A.A. & Zegrya, G.G. Impact ionization rate in direct gap semiconductors. Jetp Lett. 105, 586–590 (2017). https://doi.org/10.1134/S0021364017090065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017090065

Navigation