Skip to main content
Log in

FMR Investigation of the Magnetic Anisotropy in Films Synthesized by Co+ Implantation into Si

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Thin ferromagnetic films with the uniaxial magnetic anisotropy were synthesized by Co+ implantation into single-crystal silicon in the magnetic field. It was concluded that the formation of the induced magnetic anisotropy is due to the directional atomic pair ordering (Neel–Taniguchi model). The synthesized films were studied by the ferromagnetic resonance (FMR) method in the temperature range from 100 to 300 K. The FMR linewidth is almost independent of temperature, which is in agreement with the Raikher model describing the magnetic resonance of uniaxial magnetic particles. It is found that the temperature dependence of the anisotropy constant is linear. This dependence can be associated with the difference in the coefficients of thermal expansion of the Si (111) substrate and the ion-beam-synthesized cobalt silicide films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.L. Zhang, M. Ostling, Crit. Rev. Solid State Mater. Sci. 28, 1 (2003)

    Article  ADS  Google Scholar 

  2. A. Ionescu, C.A.F. Vaz, T. Trypiniotis, C.M. Gurtler, H. GarciaMiquel, J.A.C. Bland, M.E. Vickers, R.M. Dalgliesh, S. Langridge, Y. Bugoslavsky, Y. Miyoshi, L.F. Cohen, K.R.A. Ziebeck, Phys. Rev. B 71, 094401 (2005)

    Article  ADS  Google Scholar 

  3. X. Zhao, S. Yu, S. Wu, M.C. Nguyen, C.-Z. Wang, K.-M. Ho, Phys. Rev. B 96, 024422 (2017)

    Article  ADS  Google Scholar 

  4. V.Y. Petukhov, I.B. Khaibullin, M.M. Zaripov, R. Groetzschel, M. Voelskow, R. Klabes, Phys. Status Solidi A 96, 463–468 (1986)

    Article  ADS  Google Scholar 

  5. G.G. Gumarov, V.Y. Petukhov, V.A. Zhikharev, V.F. Valeev, R.I. Khaibullin, Nucl. Instrum. Methods Phys. Res. B 267, 1600–1603 (2009)

    Article  ADS  Google Scholar 

  6. G.G. Gumarov, D.A. Konovalov, A.V. Alekseev, V.Y. Petukhov, V.A. Zhikharev, V.I. Nuzhdin, V.A. Shustov, Nucl. Instrum. Methods Phys. Res. B 282, 92–95 (2012)

    Article  ADS  Google Scholar 

  7. V.V. Chirkov, G.G. Gumarov, V.Y. Petukhov, A.E. Denisov, J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 1, 142–146 (2018)

    Google Scholar 

  8. S. Chikazumi, in Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 1996), pp. 299–309

    Google Scholar 

  9. M. Farle, Rep. Prog. Phys. 61, 755–826 (1998)

    Article  ADS  Google Scholar 

  10. G.A. Muller, E. Carpene, R. Gupta, P. Schaaf, K. Zhang, K.P. Lieb, Eur. Phys. J. B 48, 449–462 (2005)

    Article  ADS  Google Scholar 

  11. H.B. Callen, E. Callen, J. Phys. Chem. Solids 27, 1271 (1966)

    Article  ADS  Google Scholar 

  12. J. McCord, I. Monch, J. Fassbender, A. Gerber, E. Quandt, J. Phys. D Appl. Phys. 42, 055006 (2009)

    Article  ADS  Google Scholar 

  13. S. Qiao, S. Nie, J. Zhao, X. Zhang, J. Appl. Phys. 117, 093904 (2015)

    Article  ADS  Google Scholar 

  14. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008)

    Article  ADS  Google Scholar 

  15. Y.S. Zhang, W. He, J. Ye, B. Hu, J. Tang, X.Q. Zhang, Z.H. Cheng, Phys. B 512, 32–38 (2017)

    Article  ADS  Google Scholar 

  16. M. Grimsditch, A. Hoffmann, P. Vavassori, H. Shi, D. Lederman, Phys. Rev. Lett. 90, 257201 (2003)

    Article  ADS  Google Scholar 

  17. V.Y. Petukhov, N.R. Khabibullina, M.I. Ibragimova, A.A. Bukharaev, D.A. Biziaev, E.P. Zheglov, G.G. Gumarov, R. Muller, Appl. Magn. Reson. 32, 345–361 (2007)

    Article  Google Scholar 

  18. K. Zakeri, T. Kebe, J. Lindner, M. Farle, J. Magn. Magn. Mater. 299, 1–10 (2006)

    Article  ADS  Google Scholar 

  19. K. Lenz, E. Kosubek, K. Baberschke, H. Wende, J. Herfort, H.P. Schonherr, K.H. Ploog, Phys. Rev. B 72, 144411 (2005)

    Article  ADS  Google Scholar 

  20. B.A. Belyaev, A.V. Izotov, JETP Lett. 103, 41–45 (2016)

    Article  ADS  Google Scholar 

  21. M. Belmeguenai, F. Zighem, D. Faurie, H. Tuzcuoglu, S.M. Cherif, K. Westerholt, W. Seiler, P. Moch, Phys. Status Solidi A 209, 1328–1333 (2012)

    Article  ADS  Google Scholar 

  22. A.V. Alekseev, G.G. Gumarov, M.M. Bakirov, V.Y. Petukhov, V.I. Nuzhdin, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 10, 608–611 (2016)

    Article  Google Scholar 

  23. Y.L. Raikher, V.I. Stepanov, Sov. Phys. JETP 75, 764 (1992)

    Google Scholar 

  24. G.S. Krinchik, Physics of Magnetic Phenomena (Moscow State University Press, Moscow, 1985), p. 107. (in Russian)

    Google Scholar 

  25. S. Gardelis, J. Androulakis, J. Giapintzakis, O. Monnereau, P.D. Buckle, Appl. Phys. Lett. 85, 3178 (2004)

    Article  ADS  Google Scholar 

  26. B.N. Sahu, A.S. Doshi, R. Prabhu, N. Venkataramani, S. Prasad, R. Krishnan, AIP Adv. 6, 055928 (2016)

    Article  ADS  Google Scholar 

  27. H. Katada, T. Shimatsu, I. Watanabe, H. Muraoka, Y. Sugita, Y. Nakamura, IEEE Trans. Magn. 36, 2905–2908 (2000)

    Article  ADS  Google Scholar 

  28. B. Aktas, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yldz, K. Ozdoan, M. Ozdemir, O. Yalcin, B.Z. Rameev, J. Appl. Phys. 102, 013912 (2007)

    Article  ADS  Google Scholar 

  29. K. Zakeri, T. Kebe, J. Lindner, M. Farle, Phys. Rev. B 73, 052405 (2006)

    Article  ADS  Google Scholar 

  30. C.M. Fu, P.C. Kao, H.S. Hsu, Y.C. Chao, C.C. Yu, J.C.A. Huang, IEEE Trans. Magn. 38, 2667–2669 (2002)

    Article  ADS  Google Scholar 

  31. S. Yoon, Hyperfine Interact. 231, 21–28 (2015)

    Article  ADS  Google Scholar 

  32. B.K. Chatterjee, C.K. Ghosh, K.K. Chattopadhyay, J. Appl. Phys. 116, 153904 (2014)

    Article  ADS  Google Scholar 

  33. J. Wang, F. Zhao, W. Wu, G.M. Zhao, J. Appl. Phys. 110, 096107 (2011)

    Article  ADS  Google Scholar 

  34. G. Long, H.W. Zhang, D. Li, R. Sabirianov, Z. Zhang, H. Zeng, Appl. Phys. Lett. 99, 202103 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Program of ONIT RAS № IV.3.3. “Element base of microelectronics, nanoelectronics and quantum computers, materials for micro- and nanoelectronics, microsystem technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chirkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, V.V., Gumarov, G.G., Petukhov, V.Y. et al. FMR Investigation of the Magnetic Anisotropy in Films Synthesized by Co+ Implantation into Si. Appl Magn Reson 49, 381–388 (2018). https://doi.org/10.1007/s00723-018-0980-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0980-7

Navigation