Skip to main content
Log in

Allowable number of plasmons in nanoparticle

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We address thermal and strength phenomena occurring in metal nanoparticles due to excitation of surface plasmons. The temperature of the nanoparticle is found as a function of the plasmon population, allowing for the Kapitza heat boundary resistance and temperature dependencies of the host dielectric heat conductivity and the metal electrical conductivity. The latter is shown to result in the positive thermal feedback which leads to appearance of the maximum possible number of plasmon quanta in the steady-state regime. In the pulsed regime the number of plasmon quanta is shown to be restricted from above also by the ponderomotive forces, which tend to deform the nanoparticle. Obtained results provide instruments for the heat and strength management in the plasmonic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  2. A. Sarychev, G. Shvets, and V. Shalaev, Phys. Rev. E 73, 036609 (2006).

    Article  ADS  Google Scholar 

  3. A. Sarychev and G. Tartakovsky, Phys. Rev. B 75, 1 (2007).

    Article  Google Scholar 

  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).

    Article  ADS  Google Scholar 

  5. M. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Sutee-wong, and U. Wiesner, Nature 460, 1110 (2009).

    Article  ADS  Google Scholar 

  6. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).

    Article  ADS  Google Scholar 

  7. D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photon. 4, 83 (2010).

    Article  ADS  Google Scholar 

  8. A. Brolo, Nature Photon. 6, 709 (2012).

    Article  ADS  Google Scholar 

  9. R. F. Oulton, Mater. Today 15, 26 (2012).

    Article  Google Scholar 

  10. M. I. Stockman, Opt. Express 19, 22029 (2011).

    Article  ADS  Google Scholar 

  11. G. Colas des Francs, S. Derom, R. Vincent, A. Bouhelier, and A. Dereux, Int. J. Opt. 2012, 175162 (2012).

    Google Scholar 

  12. J. P. Freedman, J. H. Leach, E. A. Preble, Z. Sitar, R. F. Davis, and J. A. Malen, Sci. Rep. 3, 2963 (2013).

    ADS  Google Scholar 

  13. G. Chen, Phys. Rev. Lett. 86, 2297 (2001).

    Article  ADS  Google Scholar 

  14. J. C. Duda, C.-Y. P. Yang, B. M. Foley, R. Cheaito, D. L. Medlin, R. E. Jones, and P. E. Hopkins, Appl. Phys. Lett. 102, 081902 (2013).

    Article  ADS  Google Scholar 

  15. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, ACS Nano 7, 42 (2013).

    Article  Google Scholar 

  16. M. Liu, M. Pelton, and P. Guyot-Sionnest, Phys. Rev. B 79, 035418 (2009).

    Article  ADS  Google Scholar 

  17. J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, Nano Lett. 12, 1561 (2012).

    Article  ADS  Google Scholar 

  18. O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. V. Kotko, Surf. Sci. 608, 275 (2013).

    Article  ADS  Google Scholar 

  19. P. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  20. T. Castro, R. Reifenberger, E. Choi, and R. Andres, Phys. Rev. B 42, 8548 (1990).

    Article  ADS  Google Scholar 

  21. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, Plasmonics 7, 685 (2012).

    Article  Google Scholar 

  22. P. Jund and R. Jullien, Phys. Rev. B 59, 13707 (1999).

    Article  ADS  Google Scholar 

  23. Y.-G. Yoon, R. Car, D. Srolovitz, and S. Scandolo, Phys. Rev. B 70, 012302 (2004).

    Article  ADS  Google Scholar 

  24. Y. Martynenko and L. Ognev, Tech. Phys. 50, 1522 (2005).

    Article  Google Scholar 

  25. L. Landau and E. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, Oxford, 1980), p. 1.

    Google Scholar 

  26. S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. El-Sayed, Phys. Rev. B 61, 6086 (2000).

    Article  ADS  Google Scholar 

  27. S. Link, C. Burda, B. Nikoobakht, and M. El-Sayed, Chem. Phys. Lett. 315, 12 (1999).

    Article  ADS  Google Scholar 

  28. D. Östling, P. Stampfli, and K. H. Bennemann, Zeitschr. Phys. D 28, 169 (1993).

    ADS  Google Scholar 

  29. L. Landau and E. Lifshits, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984).

    Google Scholar 

  30. D. Lee, X. Wei, M. Zhao, X. Chen, S. C. Jun, J. Hone, and J. W. Kysar, Model. Simul. Mater. Sci. Eng. 15, 181 (2007).

    Article  ADS  Google Scholar 

  31. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 87, 054109 (2013).

    Article  ADS  Google Scholar 

  32. V. H. Whitley, S. D. McGrane, D. E. Eakins, C. A. Bolme, D. S. Moore, and J. F. Bingert, J. Appl. Phys. 109, 013505 (2011).

    Article  ADS  Google Scholar 

  33. L. Condra, J. Svitak, and A. Pense, IEEE Trans. Parts, Hybrids, Packag. 11, 290 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Parfenyev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, I.A., Parfenyev, V.M., Vergeles, S.S. et al. Allowable number of plasmons in nanoparticle. Jetp Lett. 100, 530–534 (2014). https://doi.org/10.1134/S0021364014200053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014200053

Keywords

Navigation