Skip to main content

LED Internal Quantum Efficiency Meter

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A description and characteristics of the developed internal quantum efficiency (IQE) meter for InGaN LEDs are presented. The meter allows one to determine the IQE of LEDs in the current range up to 25 mA by measuring the watt-ampere characteristic and solving a system of equations relating the values of the radiation power of the LED at two currents with an approximating function obtained on the basis of the ABC model (models of recombination of charge carriers in a light-emitting heterostructure, where A, B, and C are the coefficients of nonradiative, radiative, and Auger recombination, respectively). Unlike the well-known Russian and foreign analogues, the IQE meter is characterized by simplicity of hardware implementation and allows determining the IQE of LEDs at room temperature. The operation of the meter was tested on the example of measuring the IQE of commercial green and blue InGaN LEDs. The meter can be used in scientific laboratories as well as in the input control of enterprises–manufacturers of LED products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Schubert, E.F., Light-Emitting Diodes, Cambridge: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  2. Shim, J.-I. and Shin, D.-S., Nanophotonics, 2018, vol. 7, no. 10, p. 1601. https://doi.org/10.1515/nanoph-2018-0094

    Article  Google Scholar 

  3. Marcinkevicius, S., Yapparov, R., Chow, Y.C., Lynsky, C., Nakamura, S., Denbaars, S.P., and Speck, J.S, Appl. Phys. Lett., 2021, vol. 119, p. 071102. https://doi.org/10.1063/5.0063237

    Article  ADS  Google Scholar 

  4. Wang, L., Jin, J., Mi, C., Hao, Z., Luo, Y., Sun, C., Han, Y., Xiong, B., Wang, J., and Li, H., Materials, 2017, vol. 10, p. 1233. https://doi.org/10.3390/ma10111233

    Article  ADS  Google Scholar 

  5. Lu, B., Wang, L., Hao, Z., Luo, Y., Sun, C., Han, Y., Xiong, B., Wang, J., Li, H., Chen, K., Zhuo, X., Li, J., and Kang, J., Appl. Sci., 2019, vol. 9, p. 383. https://doi.org/10.3390/app9030383

    Article  ADS  Google Scholar 

  6. Prudaev, I.A., Oleshko, V.I., Korepanov, V.I., Lisitsyn, V.M., Tolbanov, O.P., and Ivonin, I.V., RF Patent 2503024, 2013.

  7. Han, D.-P., Yamamoto, K., Ishimoto, S., Iwaya, M., Takeuchi, T., Kamiyama, S., and Akasaki, I., Appl. Phys. Express, 2019, vol. 12, p. 032006. https://doi.org/10.7567/1882-0786/aafca2

    Article  ADS  Google Scholar 

  8. Frolov, I.V., Sergeev, V.A., and Radaev, O.A., Tech. Phys., 2021, vol. 66, no. 10, p. 1107. https://doi.org/10.1134/S1063784221080077

    Article  Google Scholar 

  9. Sergeev, V.A. and Frolov, I.V., RF Patent 2740433, 2020.

  10. Van Opdorp, C. and 't Hooft, G.W., J. Appl. Phys., 1981, vol. 52, p. 3827. https://doi.org/10.1063/1.329845

    Article  ADS  Google Scholar 

  11. Shim, J.-I., Han, D.-P., Oh, C.-H., Jung, H., and Shin, D.-S., IEEE J. Quantum Electron., 2018, vol. 54, no. 2, p. 8000106. https://doi.org/10.1109/JQE.2018.2795044

    Article  Google Scholar 

  12. Frolov, I.V. and Sergeev, V.A., RF Patent 2789118, 2022.

  13. Karpov, S., Opt. Quantum Electron., 2015, vol. 47, p. 1293. https://doi.org/10.1007/s11082-014-0042-9

    Article  Google Scholar 

  14. David, A., Young, N.G., Lund, C., and Craven, M.D., ECS J. Solid State Sci. Technol., 2020, vol. 9, p. 016021. https://doi.org/10.1149/2.0372001JSS

    Article  ADS  Google Scholar 

  15. Frolov, I.V. and Sergeev, V.A., Diagnosticheskii kontrol' kachestva svetodiodov po lokal’nym parametram elektrolyuminestsentsii i fototoka (Diagnostic Quality Monitoring of LEDs by Local Parameters of Electroluminescence and Photocurrent), Moscow: SOLON-Press, 2023.

  16. Radaev, O.A., Frolov, I.V., and Sergeev, V.A., Radioelektronnaya tekhnika. Mezhvuzovskii sbornik nauchnykh trudov (Radio-Electronic Equipment. Inter-University Collection of Scientific Works), Ulyanovsk: Ulyanovsk State Technical Univ., 2021, р. 116.

  17. Onwukaeme, C., Lee, B., and Ryu, H.-Y., Nanomaterials, 2022, vol. 12, p. 2405. https://doi.org/10.3390/nano12142405

    Article  Google Scholar 

  18. Meyaard, D.S., Lin, G.-B., Cho, J., and Schubert, E.F., in Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies and Applications, Woodhead Publ., 2014, p. 279.

Download references

Funding

The work was carried out within the framework of the state task of the Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sergeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, V.A., Radaev, O.A. & Frolov, I.V. LED Internal Quantum Efficiency Meter. Instrum Exp Tech 66, 987–994 (2023). https://doi.org/10.1134/S0020441223060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223060076

Navigation