Skip to main content
Log in

Tin (IV) Oxide Coatings with Different Morphologies on the Surface of a Thinned Quartz Fiber for Sensor Application

  • LABORATORY TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Thin-film coatings of tin oxide on the surface of a chemically thinned section of a single-mode quartz fiber have been obtained and experimentally characterized. The materials were synthesized on the fiber surface by metal-organic chemical vapor deposition (MOCVD). To change the surface morphology, we used different amounts of tetramethyltin (SnMe4) supplied by a carrier gas (dried air) to the deposition zone by varying the temperature of the bubbler with the reagent. During deposition, the transmission spectrum of the optical path was recorded in real time, and the temperature of the bubbler in the experiments varied from –20 to +20°С. After studying the surface on a scanning electron microscope, the deposited films were tested for chemical resistance to an aqueous solution of sulfuric acid and the sensitivity of the lossy mode resonance (LMR) to changes in the refractive index of the environment in the range from 1.35 to 1.41 was evaluated. Samples produced at higher reagent flow rates exhibited a greater resonance sensitivity of 3800 nm/refractive index unit (RIU) for the first-order TM component of the resonance, but such coatings dissolve noticeably in concentrated sulfuric acid solutions, in contrast to coatings obtained with low reagent consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kersey, A.D., Opt. Fiber Technol., 1996, vol. 2, p. 291. https://doi.org/10.1006/ofte.1996.0036

    Article  ADS  Google Scholar 

  2. Franzão, O., Santos, J.L., Araújo, F.M., and Ferreira, L.A., Laser Photonics Rev., 2008, vol. 2, p. 449. https://doi.org/10.1002/lpor.200810034

    Article  ADS  Google Scholar 

  3. Roriz, P., Franzão, O., Lobo-Ribeiro, A.B., Santos, J.L., and Simoes, J.A., J. Biomed. Opt., 2013, vol.18, no. 5, p. 050903. https://doi.org/10.1117/1.jbo.18.5.050903

    Article  ADS  Google Scholar 

  4. Del Villar, I., Arregui, F.J., Zamarreno, C.R., Corres, J.M., Bariain, C., Goicoechea, J., Elosua, C., Hernaez, M., Rivero, P.J., Socorro, A.B., Urrutia, A., Sanchez, P., Zubiate, P., Lopez, D., De Acha, N., et al., Sens. Actuators, B, 2017, vol. 240, p. 174. https://doi.org/10.1016/j.snb.2016.08.126

    Article  Google Scholar 

  5. Kerttula, J., Filippov, V., Chamorovskii, Yu., Ustimchik, V., Golant, K., and Okhotnikov, O.G., Proc. SPIE, 2012, vol. 8237, p. 82370W. https://doi.org/10.1117/12.908147

    Article  ADS  Google Scholar 

  6. Dianov, E., Light: Sci. Appl., 2012, vol. 1, p. e12. https://doi.org/10.1038/lsa.2012.12

    Article  ADS  Google Scholar 

  7. Dejneka, M. and Samson, B., MRS Bull., 1999, vol. 24, p. 39. https://doi.org/10.1557/S0883769400053057

    Article  Google Scholar 

  8. Sanada, K., Shamoto, T., and Inada, K., J. Non-Cryst. Solids, 1995, vol. 189, p. 283. https://doi.org/10.1016/0022-3093(95)00233-2

    Article  ADS  Google Scholar 

  9. Ascorbe, J., Corres, J.M., Matias, I.R., and Arregui, F.J., Sens. Actuators, B, 2016, vol. 233, p. 7. https://doi.org/10.1016/j.snb.2016.04.045

    Article  Google Scholar 

  10. Zhu, S., Pang, F., Huang, S., Zou, F., Dong, Y., and Wang, T., Opt. Express, 2015, vol. 23, p. 13880. https://doi.org/10.1364/OE.23.013880

    Article  ADS  Google Scholar 

  11. Arregui, F.J., Del Villar, I., Zamarreno, C.R., Zubiate, P., and Matias, I.R., Sens. Actuators, B, 2016, vol. 232, p. 660. https://doi.org/10.1016/j.snb.2016.04.015

    Article  Google Scholar 

  12. Wang, J., Luo, Z., Zhou, M., Ye, C., Fu, H., Cai, Z., Cheng, H., Xu, H., and Qi, W., IEEE Photonics J., 2012, vol. 4, p. 1295. https://doi.org/10.1109/JPHOT.2012.2208736

    Article  ADS  Google Scholar 

  13. Lee, J., Koo, J., Jhon, Y.M., and Lee, J.H., Opt. Express, 2014, vol. 22, p. 6165. https://doi.org/10.1364/OE.22.006165

    Article  ADS  Google Scholar 

  14. Lee, H., Kwon, W.S., Kim, J.H., Kang, D., and Kim, S., Opt. Express, 2015, vol. 23, p. 22116. https://doi.org/10.1364/OE.23.022116

    Article  ADS  Google Scholar 

  15. Henry, W.M., Proc. SPIE, 1994, vol. 2293. https://doi.org/10.1117/12.190957

  16. Wang, Z., Zhu, G., Wang, Y., Li, M., Singh, R., Zhang, B., and Kumar, S., Appl. Opt., 2021, vol. 60, p. 2077. https://doi.org/10.1364/ao.418875

    Article  ADS  Google Scholar 

  17. Tabassum, S. and Kumar, R., Adv. Mater. Technol., 2020, vol. 5, p. 1900792. https://doi.org/10.1002/admt.201900792

    Article  Google Scholar 

  18. Paliwal, N. and John, J., IEEE Sens. J., 2015, vol. 15, p. 5361. https://doi.org/10.1109/JSEN.2015.2448123

    Article  ADS  Google Scholar 

  19. Wang, X., Wang, Q., Song, Z., and Qi, K., AIP Adv., 2019, vol. 9, p. 095005. https://doi.org/10.1063/1.5112090

    Article  ADS  Google Scholar 

  20. Urrutia, A., Del Villar, I., Zubiate, P., and Zamarreño, C.R., Laser Photonics Rev., 2019, vol. 13, no. 11, p. 1900094. https://doi.org/10.1002/lpor.201900094

    Article  ADS  Google Scholar 

  21. Ozcariz, A., Ruiz-Zamarreño, C., and Arregui, F.J., Sensors, 2020, vol. 20, p. 1972. https://doi.org/10.3390/s20071972

    Article  ADS  Google Scholar 

  22. Usha, S.P., Mishra, S.K., and Gupta, B.D., Sens. Actuators, B, 2015, vol. 218, p. 196. https://doi.org/10.1016/j.snb.2015.04.108

    Article  Google Scholar 

  23. Sanchez, P., Mendizabal, D., Zamarreno, C.R., Matias, I.R., and Arregui, F.J., Proc. SPIE, 2015, vol. 9634, p. 96347M. https://doi.org/10.1117/12.2195177

    Article  Google Scholar 

  24. Matias, I.R., Ikezawa, S., and Corres, J., Fiber Optic Sensors: Status and Future Possibilities, Springer Int. Publ., 2017, vol. 21, p. 51. https://doi.org/10.1007/978-3-319-42625-9

    Article  Google Scholar 

  25. Li, W., Zhang, A., Cheng, Q., Sun, C., and Li, Y., Optik, 2020, vol. 213, p. 164696. https://doi.org/10.1016/j.ijleo.2020.164696

    Article  ADS  Google Scholar 

  26. Savelyev, E.A., Eur. Phys. J. D, 2021, vol. 75, p. 285. https://doi.org/10.1140/epjd/s10053-021-00296-0

    Article  ADS  Google Scholar 

  27. Kuznetsov, P.I., Sudas, D.P., and Savel’ev, E.A., Instrum. Exp. Tech., 2020, vol. 63, p. 516. https://doi.org/10.1134/S0020441220040302

    Article  Google Scholar 

  28. Kuznetsov, P.I., Sudas, D.P., Yapaskurt, V.O., and Savelyev, E.A., Opt. Mater. Express, 2021, vol. 11, p. 2650. https://doi.org/10.1364/OME.433169

    Article  ADS  Google Scholar 

  29. Kuznetsov, P.I., Sudas, D.P., and Savelyev, E.A., Sens. Actuators, A, 2021, vol. 321, p. 112576. https://doi.org/10.1016/j.sna.2021.112576

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.O. Yapaskurt for the images obtained with a scanning electron microscope.

Funding

The work was supported by the Russian Science Foundation (grant no. 21-19-00259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sudas.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

International conference “Optical Reflectometry, Metrology & Sensing 2023ˮ, Russia, Perm, 24–26, May 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudas, D.P., Kuznetsov, P.I. Tin (IV) Oxide Coatings with Different Morphologies on the Surface of a Thinned Quartz Fiber for Sensor Application. Instrum Exp Tech 66, 875–880 (2023). https://doi.org/10.1134/S0020441223050226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050226

Navigation