Skip to main content
Log in

A Low-Noise Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Seismology Application

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A fiber phase-sensitive optical time-domain reflectometer (a distributed acoustic sensor) with a low-noise output signal in the frequency range of 0.01−1 Hz is proposed for seismology applications. The sensor architecture is based on an unbalanced Mach−Zehnder interferometer, which is used to form a dual-pulse probe signal with required phases of its components and to stabilize the frequency of the laser source in the feedback circuit. The low noise level of the output signal is achieved in the proposed circuit by compensating for the difference in the optical paths of the dual-pulse probe signal fields scattered by different fiber sections. The applicability of the proposed circuit has been experimentally demonstrated by detecting a remote earthquake using a fiber-optic cable located at the bottom of the Black Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Zh., and Detomo, R., Geophys. Prospect., 2014, vol. 62, p. 679. https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.12116.

    Article  ADS  Google Scholar 

  2. Williams, E.F., Fernández-Ruiz, M.R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., and Martins, H.F., Nat. Commun., 2019, vol. 10, p. 1. https://www.nature.com/articles/s41467-019-13262-7.

    Article  Google Scholar 

  3. Posey, R., Jr., Johnson, G.A., and Vohra, S.T., Electron. Lett., 2000, vol. 36, p. 1688. https://digital-library.theiet.org/content/journals/10.1049/el_20001200.

    Article  ADS  Google Scholar 

  4. Farhadiroushan, M., Parker, T.R., and Shatalin, S., Int. Patent WO2010136810A2, 2010. https://patents.google.com/patent/WO2010136810A2/en.

  5. Masoudi, A., Belal, M., and Newson, T.P., Meas. Sci. Technol., 2013, vol. 24, p. 085204. https://iopscience.iop.org/article/10.1088/0957-0233/24/8/085204. https://patents.google.com/patent/GB2222247A/en.

  6. Dakin J.P., and Lamb C., UK Patent GB2222247A. 1990. https://patents.google.com/patent/GB2222247A/en

  7. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., Sergachev, I.Y., and Simikin, D.E., Quantum Electron., 2014, vol. 44, p. 965. https://iopscience.iop.org/article/10.1070/QE2014v044n10ABEH015470.

    Article  ADS  Google Scholar 

  8. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., and Simikin, D.E., Laser Phys., 2014, vol. 24, p. 115106. https://iopscience.iop.org/article/10.1088/1054-660X/24/11/115106.

    Article  ADS  Google Scholar 

  9. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., and Simikin, D.E., Laser Phys., 2015, vol. 25, p. 065101. https://iopscience.iop.org/article/10.1088/1054-660X/25/6/065101.

    Article  ADS  Google Scholar 

  10. Hartog, A.H., An Introduction to Distributed Optical Fibre Sensors, CRC Press, 2017.

    Book  Google Scholar 

  11. Alekseev, A.E., Gorshkov, B.G., Bashaev, A.V., Potapov, V.T., Taranov, M.A., and Simikin, D.E., Laser Phys., 2021, vol. 31, p. 035101. https://iopscience.iop.org/article/10.1088/1555-6611/abd936.

    Article  ADS  Google Scholar 

  12. Alekseev, A.E., Tezadov, Y.A., and Potapov, V.T., Laser Phys., 2017, vol. 27, p. 055101. https://iopscience.iop.org/article/10.1088/1555-6611/aa6378/.

    Article  ADS  Google Scholar 

  13. Hartog, A. and Kader, K., US Patent 9170149, 2015. https://patents.google.com/patent/US9170149B2/en.

  14. Lu, Y., Zhu, T., Chen, L., and Bao, X., J. Lightwave Technol., 2010, vol. 28, p. 3243. https://opg.optica.org/jlt/abstract.cfm?uri=jlt-28-22-3243.

    ADS  Google Scholar 

  15. Gorshkov, B.G., Alekseev, A.E., Taranov, M.A., Simikin, D.E., Potapov, V.T., and Ilinskiy, D.A., Appl. Opt., 2022, vol. 61, p. 8308. https://opg.optica.org/ao/abstract.cfm?uri=ao-61-28-8308.

    Article  ADS  Google Scholar 

  16. Vdovenko, V.S., Gorshkov, B.G., Zazirnyi, D.V., and Zazirnyi, M.V., RF Patent 2477838, 2013. https://patents.google.com/patent/RU2477838C1/ru.

Download references

Funding

This work was supported in part by the state assignment for the Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Goryacheva

“Optical Reflectometry, Metrology, & Sensing 2023,” International Conference, Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.E., Gorshkov, B.G., Il’inskii, D.A. et al. A Low-Noise Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Seismology Application. Instrum Exp Tech 66, 837–842 (2023). https://doi.org/10.1134/S0020441223050019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050019

Navigation